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Abstract—Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and
rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus
on exploring the visual and tag information, without considering the user information, which often reveals important hints
on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to
collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically,
the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and
tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor
factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor
into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we
investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental
results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-

the-art methods.

Index Terms—Social image tag refinement, tensor completion, tri-clustering.

1 INTRODUCTION

N social websites, users are allowed to upload
Opersonal images, label them with freely-chosen
tags, and join user groups with common interests.
Due to the various professional backgrounds of users,
their provided tags tend to be ambiguous, noisy and
incomplete. If directly leveraging these noisy and
incomplete social tags to perform the tag-based image
retrieval, the performance will be far from satisfacto-
ry [1]. Therefore, researchers are motivated to develop
social image tag refinement approaches [2], [3], [4], [5]
to improve the quality of social tags so as to reduce the
semantic gap [6], [7]. This task is closely related to tag
completion [8], [9], [10], image (re)tagging [11], [12],
[13], and image annotation [1], [14]. The goal of social
image tag refinement is to automatically complete the
missing tags and rectify the noise-corrupted ones.

The prior works related to image tag refinement
mainly focus on exploring semantic correlation among
tags [3], [15], [16], [17]. For example, Jin et al. [15]
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identified and filtered out the weakly irrelevant an-
notated tags by exploring tag semantic correlation
on WordNet. Xu et al. [3] proposed a tag refinement
scheme based on tag similarity and relevance by using
LDA to mine latent topics. The authors in [18], [13] si-
multaneously utilized the consistency between image-
image and tag-tag intra-relations for tag refinement.
In [19], a general subspace learning framework was
proposed to explore the visual consistency and the
latent structure, and achieved encouraging perfor-
mance. The common assumption of these approaches
is that the visually similar images tend to have the
similar semantic tags, and vice versa.

Recently, matrix completion based on low-rank ap-
proximation [20] has been explored, which refers to
a process of inferring missing entries from a small
part of the observed entries in the original matrix
between the dyad data (such as word-document in
text mining, user-item in recommendation system,
and image-feature in image processing). Inspired by
matrix completion, several approaches have been pro-
posed in [4], [8], [21], [22] to leverage a small number
of observed noisy tags to simultaneously recover the
missing tags, remove the noisy tags, and even re-
rank the complete tag list [23]. These methods have
achieved impressive performance in image tag re-
finement. However, all the aforementioned methods
only explore the visual and tag information, without
considering the user information (e.g., user interests
and backgrounds) [24] that usually reveals impor-
tant hints on the (in)correct tags of social images.
Therefore, these methods lacking the consideration of
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Fig. 1. Exemplary images from Flickr with the associ-
ated tags and users. The user information can assist
the image tag refinement. The tags (red font) are the
completed tags after the refinement.

user information cannot achieve satisfied performance
when the visual content and label taxonomy (e.g.
WordNet taxonomy) are inconsistent.

1.1 Motivation

We explore the user information to assist social image
tag refinement, especially for those images with con-
text information [25], e.g., geo-related tags, event tags,
etc. Intuitively, a batch of images uploaded by the
same user tend to have close relations, if these images
share the same type in terms of events or locations.
This hint can help to accurately refine image tags. For
example, as illustrated in Figure 1(a), the middle im-
age is more visually similar to the bottom image than
the top one. If only considering the visual consisten-
cy and tag semantic correlation, the tag “Olympics”
cannot be assigned to the middle image. Although
this image indeed contains the Olympics logo, it is
too small to be captured by the visual information.
By introducing the user information, we can find that
most of images (accounting for 87% in total) uploaded
by the owner of the middle image (“26310615@N00")
are related to the “Olympics” event. Thus we can
easily infer that the middle image is probably related
to the “Olympics” event.

In addition to event tags, the user information can
also help to refine geo-tags. For instance, in Fig-
ure 1(b), the location information is available in the
top image (about U.S. Capitol Building, with geo-tag
“America”) and the bottom image (about Cuba Capi-
tol Building, with geo-tag “Cuba”), but missing in
the middle image. From the visual aspect, the middle
image should be more similar to the bottom image
than the top one. If we follow the traditional meth-
ods which only consider visual consistency and tag
semantic correlation, we will incorrectly assign the ir-
relevant tag “Cuba” to the middle image. However, by
analyzing the user information, we find that the own-
er of the middle image (“34256719@N04") has upload-
ed many photos with tag “America”, but none with
tag “Cuba”, while the other user (“27564001@N00")

user2

user 1

Image group1

Image group2 Image group3

Fig. 2. lllustration of image groups. Although users
generally upload images with multiple interests, the
visual difference can obviously cluster them into serval
groups.

has uploaded many photos with tag “Cuba”, but nev-
er with tag “America”. Therefore, the middle image is
most likely related to “America” rather than “Cuba”.

Although the user information can provide impor-
tant clues to assist image tag refinement, the misuse
of it might lead to errors and noises because users
often upload photos with multiple interests. Actually,
we can address this issue by leveraging the visual
consistency together with the user information. For
example, in Figure 2, the images can be clustered
into three groups (i.e., the three columns) based on
the visual features. The three groups are related to
“bridge”, “mountain” and “person” respectively. And
then the user information can be leveraged to further
cluster each group into two events or locations (i.e.,
the two rows in the figure). For example, the top row
of image group 2 is related to the Cascades Mountain,
while the bottom row is about Ben Nevis. Therefore,
we need to jointly explore the information from users,
images and tags to facilitate the image tag refinement.

Recently, some researchers proposed to solve the
social image tag refinement problem via tensor com-
pletion [26], [27]. They model the inter-relations a-
mong users, images and tags via a 3rd-order ten-
sor, and complete an approximate low-rank tensor
to refine image tags. The proposed method in [26]
refines the tags by directly decomposing the user-
image-tag tensor. However, there are several problems
in the tensor completion for real-world application-
s [28]. First, the dimension of the constructed tensor is
usually extremely large. The process of tensor comple-
tion generates many large-scale temporary matrices
and tensors, which requires expensive computing and
memory cost. Existing works mainly explore paral-
lel solutions to achieve low complexity and reduce
memory cost [29], [30], [28], [31], [32]. Second, the
associated 3rd-order tensor is usually very sparse,
since the number of observed elements only accounts
for a very small ratio compared to the size of the
tensor. In order to solve the super sparsity problem
of the original tensor, the authors in [27] adopted a
ranking optimization scheme to rank tags. However,
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Fig. 3. The framework of Tri-clustered Tensor Completion for social-aware image tag refinement. (a) Relation
discovery: find the intra-relations among the homogeneous data; (b) Tri-clustering and sub-tensor selection:

divide the original tensor into sub-tensors via tri-cluster
and tags, and select the denser sub-tensors; and (c) su

it requires several selected “negative” tags before
ranking, which will bring in incorrect correlations.

Therefore, to address the above issues, we propose
a novel tri-clustered tensor completion (TTC) frame-
work for social image tag refinement, as illustrated in
Figure 3. First, we propose an efficient tri-clustering
method to divide the original tensor into a certain
number of sub-tensors to reduce the computing and
memory cost. As to the clustering problem, exist-
ing approaches use the associated matrix to model
the relationships between two types of data, and
then cluster the rows and columns of this matrix
simultaneously into co-clusters, which is known as
the co-clustering [33] [34]. Motivated by this, the
proposed tri-clustering simultaneously identifies the
block structures in the rows, columns and tubes.
Specifically, it divides the associated tensor into sub-
tensors based on the explicit image-tag-user inter-
relations and the latent structure of this tensor. Sec-
ond, to handle the super-sparsity problem of tensor,
we select the denser sub-tensors, and then complete
these selected sub-tensors. More generally, we con-
sider two variants of the proposed TTC method, i.e.,
TTC1 and TTC2, based on whether or not the sub-
tensors are independent of each other. TTC1 assumes

ing, which can simultaneously cluster the users, images
b-tensors completion and tag refinement.

that the sub-tensors are independent, while TTC2
assumes that the sub-tensors are dependent. In exper-
iments, the results of social image tag refinement on
a real-world social image database demonstrate the
superiority of the proposed method compared with
the state-of-the-art methods.

1.2 Contributions
The main contributions of this work can be summa-
rized as follows:

e A novel tri-clustered tensor completion (TTC)
framework for social image tag refinement is
proposed by solving the low-rank approximation
problem of the image-tag-user associated tensor.
The tri-clustering method is proposed to divide
the tensor into several sub-tensors, in order to
overcome the challenges of large-scale tensor fac-
torization.

The sub-tensor completion method is proposed
to complete the denser sub-tensors, in order to
effectively solve the super-sparse tensor comple-
tion problem.

Two variants of TTC are proposed respectively,
by considering two assumptions that whether or
not the sub-tensors are independent of each other.
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1.3 Organization

The rest of this paper is organized as follows. Sec-
tion 2 presents the problem definition of the pro-
posed method and briefly introduces the proposed
framework. Section 3 discusses how to discover the
intra-relations in the data. Section 4 introduces the
proposed tri-clustering method and the selection of
denser sub-tensors. In Section 5, we details the sub-
tensor completion and tag refinement. The optimiza-
tion procedure is presented in Section 6, followed by
the experiments in Section 7. The conclusions and
future work are given in the last section.

2 PROBLEM DEFINITION AND FRAMEWORK

In this paper, tensors, matrices, vectors, variables and
sets are denoted by calligraphic uppercase letters (e.g.,
T, A), uppercase letters (e.g., I, T, U), bold lowercase
letters (e.g., d), lowercase letters (e.g., x, ¢, u) and
blackboard bold letters (e.g., I, T, U) respectively.
Three types of heterogeneous data are collected from
photo sharing websites, i.e., the image set I = {xl}ﬂl,
the tag set T = {tj}ljﬂl and the user set U = {uk}‘kU:ll,
where [I|, |T| and |U| denote the sizes of the image
set, the tag set and the user set respectively, and z;, ¢;
and u;, denote the i-th image, the j-th tag and the k-th
user respectively. 7 € RI!XITIXIUl is an image-tag-user
associated tensor, where its entry is denoted by 7; ; »
1<i<|I,1<5<|T, and 1 < k < |UJ). If the i-th
image uploaded by the k-th user is annotated with the
j-th tag, we set 7; ;. = 1, otherwise 7; ;, = 0. In this
paper, our goal is to refine these tags by mining the
inter- and intra- relations among users, images and
tags. Specifically, we can exploit the latent relation of
the image-tag-user associated tensor to refine the tags
by completing the tensor. Before the tensor comple-
tion based on the low-rank approximation, we divide
the original tensor into sub-tensors via the proposed
tri-clustering method to overcome the challenges of
large-scale and super-sparse tensor factorization.

The proposed TTC framework is shown in Figure 3,
including three modules. (a) Relation discovery mod-
ule. We construct three similarity matrices (i.e., image-
image, user-user and tag-tag similarity matrices) from
the data. (b) Tri-clustering module. Its goal is to parti-
tion the large-scale and super-sparse tensor into a cer-
tain number of sub-tensors and select the denser sub-
tensors. We expect that the tensor partitioning process
can divide the heterogeneous data (images, tags and
users) into several groups, in each of which the data is
similar in some aspects. After tri-clustering, we select
the denser sub-tensors with a relatively larger number
of observed entries. (c) Tensor completion and tag
refinement module. The purpose is to complete the
selected sub-tensors to refine social image tags. We
employ the tensor Tucker model [35] and low-rank ap-
proximation to implement the sub-tensor completion.
Here, we investigate the independence or dependence

among all the selected sub-tensors, and propose two
variants of TTC (i.e., TTC1 and TTC2). TTC1 assumes
that these sub-tensors are independent, while TTC2
assumes that these sub-tensors are dependent. Then
we integrate these reconstructed sub-tensors into the
expected tensor. In order to acquire the image-tag
relation matrix, we accumulate the entries along the
user axis of this resulted tensor. Finally, we re-rank
the tags of images based on the entry values of the
obtained image-tag relation matrix.

3 RELATION DISCOVERY

Besides the image-tag-user associated tensor 7 ¢
RIIXITXIUI modeling the inter-relations among users,
images, and tags, we should also consider the intra-
relations in these three types of data.

Let S' € R™*! denote the image similarity matrix,
where the similarity between images z; and z; is
defined as

||d$1 - de’jH2
722 ) (1)

g

S},j = exp <—

Here d,, indicates the low-level features of z;, and o
is the parameter of the RBF kernel.

The categorical relations and the co-occurrence [36]
are two commonly used measures to calculate the sim-
ilarity of different tags . Similar to the strategy in [27],
we compute the tag correlation matrix ST € RITI*IT
as follows,

Nt b)

2-IC(LOS (4, 1))
N(&)+ N(t)~N(s, 6) '

IC(t) + IC(t;)

T
St i=a

+(1—a1)
@

Here, a; denotes the weighted coefficient. N(t;) is
the occurrence count for tag t;, and N(t;,t;) is the
co-occurrence count for tags ¢; and t;. Following the
same definition of WordNet taxonomy in [37], [38],
LCS(t;,t;) is the least common subsumer of tags t;
and t; , and IC(t;) is the information content of tag t;.
The least common sub-sumer (LCS) of two synsets in
WordNet is the sumer that does not have any children
that are also the sub-sumer of two synsets. In other
words, the LCS of two synsets is the most specific
sub-sumer of the two synsets. The first term and the
second term of Eq. (2) are the measurements of the co-
occurrence and the categorical relation, respectively.
It is observed that users in many social websites
with common interest or favor usually have the
same or overlapping behaviors. In this paper, it is
assumed that two users with higher co-occurrence
are more likely to have the common preference and
background, and vice versa. The common prefer-
ence and background between users are reflected by
the co-joined groups in social websites. Therefore,
we can compute the co-occurrence between users to
measure their similarity. The user similarity matrix
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Fig. 4. The statistics on the real-world NUS-WIDE-
USER dataset.

SU e RIVIXIUI is defined as follows,

G Num(u;, u;) 3)
"~ Num(u;) + Num(u;) — Num(u;, u;)’

where Num(u;,u;) denotes the number of groups
which both of users u; and u; join, and Num(w;) is
the number of groups which user u; joins.

4 TRI-CLUSTERING AND SUB-TENSOR SE-
LECTION
4.1 Tri-Clustering

The image-tag-user associated tensor 7~ € RI!XITIxIU]
constructed from a real-world dataset is very sparse.
Taking the NUS-WIDE-USER dataset (see details in
Section 7.1) used in the experiments as an example,
this dataset contains about 250k images, 5k tags and
50k users. The distributions of the tag numbers per
image and the image numbers per owner are shown
in Figure 4(a) and Figure 4(b) respectively. In this
dataset, the size of the constructed image-tag-user
associated tensor is 250k x 5k x 50k and the number
of the non-zero entries is about 2,800k. That is, the
density ratio (number of non-zero entries/tensor size)
is 2,800k /(250k x 5k x 50k) ~ 4.5x 10~8. From the ratio,
we can see that this tensor is extremely sparse.

To handle this problem, we propose a novel tri-
clustering method to divide the original tensor into
several sub-tensors, as shown in Figure 5. The tri-
clustering problem can be defined as follows: given
a tensor 7 € RINXITIXIVI the goal is to group the [I|
rows, |T| columns and |U| tubes of the tensor 7 into I/,
IT and 1Y clusters respectively by the corresponding
clustering mapping p/, p” and pY simultaneously.
And then, we obtain 7 xIT x1V sub-tensors. To the best
of our knowledge, there are only few approaches [39],
[40] working on tri-clustering. However, they use two-
way co-clustering with two steps rather than an end-
to-end solution. They first utilize the inter-relations
between two heterogeneous data to implement the
co-clustering, and then fuse the two types of co-
clustering results to obtain the tri-clustering results.
The main advantage of our proposed tri-clustering
method is that it is end-to-end. Figure 5 shows the
difference between our proposed tri-clustering and
the existing approaches.

Original tensor Tri-clusters

users

images

)

Our tri-clustering

tag:

co-clustering

co-clustering

Existing methods

Fig. 5. Visualization for the proposed tri-clustering
and the existing methods [39], [40]. The proposed tri-
clustering is end-to-end.

Now, we formally define the tri-mapping of tri-
clustering by the following formulation:

T T U
I T Uy, Ijx|T|x|U 7 I¥ x| T9 7 |x| U*
©Lptp ).ﬁ)j’keRll T[] |—)7;I’jT7kU€R| X|T7 [ \’

4)
therez'I—l l] 'T:L"'A,ZT,]CU21,-~-,ZU,
' cl, ™ CT, U’“ CU, and 71 jr v denotes the

approximated mean value of the (if,;T,kY)-th tri-
cluster. Here, to measure the quality of tri-clustering,
we adopt a squared error loss function. We aim to
find the optimal tri-mapping (p’, p*, pV) for the rows,
columns, and tubes of the tensor 7, so as to minimize
the following objective function with respect to the
observed value,

[T U

o, T U)ZZZWJ}C 0,5,k TI (2),pT(4),pY ( )7

=1 j=1 k=1
©)
where W, ;1 is the 0/1 weight which guarantees
that only the observed entries contribute to the loss
function. That is, the weights for observed values in
T are set to 1, and others to 0. Then we can obtain
the tri-clustering index i/ = p!(i), ;7 = pT(j), and
kY = pY (k).
By incorporating the biases of the individual im-
ages, tags, users, as well as the tri-cluster mean, we
define 7;17jT)kU in Eq. (4) as follow:

= T o (T =T (T =TT =T,),

(6)
where il = pl(i),jT = pT(j), and kY = pY(k). In
Eq. (6), 7}, T, and T,V denote the average values
of the i-th lateral slice, the j-th horizontal slice, and

the k-th frontal slice of the tensor, respectively,

7;I,jT,k7U

1
T = T
T 0] jeiey "ok
oo ;
LR iy T @
TV = S T
F |H| |T| i€l,jeT Ik
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T o, Tii, T and T3 are defined as follows,
1

Tit 5 k= T T R o [OR7] 2ie” e ewe T
1

721 |]Iz |Zz€]1’ TI
1

Tir = B Zjent T3

77cU - |UkU| ZkeUkU TkT’

®)
where T¢', T9" and U*’ denote the index sets of
images, tags, and users in the (i, j7, kY)-th tri-cluster,
respectively. To solve the optimization of the tri-
clustering problem in Eq. (5), we adopt an iterative
alternating updating algorithm, of which the details
will be given in Section 6.1.

4.2 Pruning Strategy

Once the optimal tri- mapJ)mg (', pT,pY) and tri-
clusters {(i!, j7, kU)}(7I \ L _, yu—y) are obtained, the
original tensor 7 € R‘I‘X‘T‘XM can be divided in-

to I (I = ! x T x V) sub-tensors A"+’ ¢
T T U

R X7 < U* |, where i/ = 1,2,---,1!, jT =

1,2,--- 07 and kY = 1,2,--- IY. Here, many sub-

tensors are (nearly) zero. Candes ef al. [41] proved
that the super-sparse matrix cannot be completed
when the number of available entries is less than one
specific value. Thus, we select the dense sub-tensors
for tensor completion in our approach. We measure
the density ratio r(A* " *”) (number of non-zero
entries/tensor size) of each sub-tensor and propose
a pruning strategy based on a threshold 6. In order
to ensure that all images are retained, we reorder the
sub-tensors, which share the common index i!, based
on the density ratios (A" ) in descending order.
Denote {1¢',2¢ ... Ni'} as the descent order of all
sub-tensors Ail"*‘, and .AZ as the n' -th sub-tensor
in {1"',2"" ... N""}. Similar to the principal compo-
nents selectlon in principal component analysis, we
define a formula based on the density contribution
rate of the sub-tensors, i.e.,
(2
¢:§44@J S0 ©)
En (AL

and select the sub-tensors corresponding to the M
largest density ratios from all sub-tensors. This prun-
ing strategy filters out the noise, as well as reduces
the computing cost of the following sub-tensor com-
pletion step.

5 TENSOR COMPLETION AND TAG REFINE-
MENT

In this section, we introduce how to complete the
selected sub-tensors to refine the image tags. We first
complete each of the selected sub-tensors by tensor
decomposition and reconstruction. Then we integrate

these reconstructed sub-tensors into the expected ten-
sor. In order to acquire the image-tag relation matrix,
we accumulate the entries along the user axis of this
resulted tensor. Finally, we re-rank the tags of images
based on the entry values of the obtained image-tag
relation matrix.

5.1 Sub-Tensor Completion

Suppose we obtain h selected sub-tensors by using the
pruning strategy step in Section 4.2. Now the goal
is to uncover the missing image-tag-user relations
and remove the noise in each selected sub-tensor
A; (i = 1,2,--- k). The Tucker m}odelvT[35] %eeks
a tensor decomposition of A; € RII" IXIT" XU | 55
the mode products of a core tensor S; € R+ H2xMs
and I; € R IR, T, € RV <Rz, 17, ¢ RIV 1<,
The Tucker decomposition provides an extensional
solution for tensor completion to estimate the missing
entries and remove the noisy ones in an original sub-

'iI ]T k‘U .
tensor A; € RII" XIT" IXIU" | by reconstructing a low-
~ i1 ST k‘U . .
rank tensor A; € RIT" X" IXIU" 1 which approxi-
mates the original tensor as much as possible,

MZIIA A3

(10)

T;

where A; = S; x1 I; xo T; x3 U;, S; X, I; denotes n-
mode product of S; and I;, Ry < |]Ii1|, Ry < \’]I‘jT| and
Ry < |UkU|. To avoid overfitting, we also introduce
the regularization terms ||;||%, ||T;||% and ||U;||% to
the objective function in Eq. (10). Then we obtain

min Z {3 4 = Six1L;x2Tix3U; 1%

8i.0T5,Us (=4 (11)
2 2 2
AL + 1T+ 1033 }

where ) is a parameter controlling the weight of the
regularization.

However, the objective function in Eq. (11) only
considers the inter-relations among the images, tags
and users. Actually, in addition to the ternary het-
erogeneous inter-relations, there are different intra-
relations between users, images, and tags, i.e., image
similarity matrix S' € RI'*I" tag correlation matrix
ST € RITIXITI and user similarity matrix SV € RIVI*IUI,
Actually, the optimal matrices I;, T; and U; in E-
g- (11) should respectively keep consistent with the
corresponding similarity sub-matrices S, ST and SY.
We use the terms ||LIT — SH||%, ||T;TE — ST||% and
||U;UT — SP||% to measure these consistencies [8].
Then, we introduce these consistency constraints and
rewrite the objective function in (11) to formulate the
proposed TTC1 model, which assumes that the sub-
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tensors are independent with each other, as follows,

h
. 1 2
Si,g{%,U«; 7,; {5 ”AZ B SiX1IiX2TiX3UiHF i

ML + | TllE + U5 + BUILLE = S5+
1T = SEIE + OUE = SP1E)}
(12)
where 3 weights the consistency constraint.

So far, it has been noticed that the model in Eq. (12)
is under a more ideal condition that all sub-tensors are
independent of each other. In fact, the completed sub-
tensor kernels S; are related to each other. Therefore,
we introduce a public kernel Sy to bridge the relation-
ship among these sub-tensors. Specifically, we force all
the completed sub-tensor kernels S; to be close to the
public kernel Sy, i.e.,

h
min Y 7il[So = Sl + AlISil 7,

i=1

(13)

where 7; (1 = 1,2,--- ,h) is the weighted coefficient,
which measures the degree of affinity between Sy and
S;. The greater the value of 7; is, the more affinity
exists between them, and vice versa. In experiments,
we set the value of 7; based on the size of the sub-

I T U
i J k .
tensor A; € RI" XM IXIUSI: for 4 =1,2,--- | h,

1] x 17| x JUM| 14)
T = .
LS x [T x (U
We integrate the sub-tensor dependency constraint
into the objective function of (12), and obtain the
objective function g of the proposed TTC2 model as
follows,

h
min Y {%HAZ - SixlfisziXSUiH?r

min g =
Si,1:i,Ti,U; Si,1:,Ti,Us ;=1
+ 7illSi = Sol 5+ AL 5+ Tal 5+ Ul |5 +11S:] | F)

+ﬁ(|\MiT—Si-ll\%HITiTiT—S?H%HIUiUiT—S?H%l)%)

Obviously, the TTC2 model is more in line with
the actual situation compared with the TTC1 model.
The optimization solution of the objective function g
(Eq. (15)) will be introduced in Section 6.2.

5.2 Tag Refinement

When we implement the sub-tensor completion step
for a selected sub-tensor A;, we will obtain the corre-
sponding approximated sub-tensor 4;. We integrate
all sub-tensors A; (i = 1,---,h) as a new tensor
T € RIXITIXUl according to the aforementioned sub-
tensor indexes.

we then accumulate the entries along the user axis
of this new tensor 7 to acquire the desired image-
tag relation matrix. Specifically, we compute the com-
pleted image-tag relation matrix 777 € RITI*!!l by the
equation

T = (T x311)7, (16)

Algorithm 1 Tri-clustering

Input:
Image-tag-user tensor 7, weight tensor W, similarity
matrices S%, ST and SY, parameters 1,17,1Y and p.
Output:
Optimal tri-clustering mapping (p’, p", p¥).
Initialization: Randomly initialize (o', pT, pY), iter«1.
1: repeat )
2:  Compute 7,1 ,7(j,,U () based on Eq. (6);
3. Update p’: sample one subset I’ from T, and set T” =
Nl forViel,

I : - 2
p(i)= arg min Z Z Wik (Tigr — Tpf(i),pT(j),pU(k)) ;
LIS jermikelu)
for Vie I", f(i)=4 ("), where i* =arg min,,.;, S} /.
4 Update p": sample one subset T’ from T, and set
T =T'NT, for Vj € T,
DY Wik (Task =Tt Gvov) s
icllke|u|
for Vj € T, /() = /G, where j* =
arg minreps SY 4.

5 Update p": sample one subset U’ from U, and set
U’ =U'NTU, for Vk € U,

D0 Wik (Taak=Torgay, Gy ovi) s

i€|llj€|T|

T, . .
p7(j)= argmin
1< T<u™

U .
p~ (k)= argmin
1<kU U

forVk €U, p"(k) = (k*),where k¥ =arg min, .y S%. -
6:  iter<iter+1.
7: until Convergence.

where 1 € RIU*! denotes an all-ones vector. Finally,
we rerank the completed tags of the image x; based
on the values of T;! in descending order, and select
top 10 tags for this image.

6 OPTIMIZATION PROCEDURE
6.1 Solution for Tri-Clustering

For the optimization problem of the proposed tri-
clustering, we initialize the tri-clusters, and then al-
ternately optimize the clustering of the rows (images),
columns (tags) and tubes (users) until convergence.
However, if we directly implement the iterative alter-
nating updating procedures using the whole data, the
computing cost will be considerably large. Therefore,
we adopt random sampling, while each of the rest
data is assigned to a certain tri-cluster based on the
image similarity matrix S, tag correlation matrix ST
and user similarity matrix SU. In each iteration, the
percentage p of the data in the random sampling
is set to a pre-defined value. The detailed steps are
described in Algorithm 1. The convergence criterion
is that the iteration will stop when all the relative
costs of the three mapping functions are smaller than
a predefined threshold [42].

6.2 Optimization for Sub-Tensor Completion

Taking partial derivatives of the objective function
g (Eq. (15)) with respect to S;, I;, T;, U; and Sy
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respectively, we obtain the following equations,

5 ‘g =A< I ST T — S (T Ix o TE Ty x (UL U
+27;(Si — So) + 2AS;;

9 (17)

S = (i)~ LG (G +28(LI] =S Li+2M1;, (18)

where G} = Siq)(T; @ U;)T, T; ® U; denotes the

Kronecker product of T; and U;, and A, is the n-
mode matricization of A;;

% = (Aie) — LG)(G))" + 28(Ti T — Si)T; + 27T,
Z 19)
where GT = Si2)(li ® U)7T;
385, = (Ais) — UGG +2B(UUT = Si)Ui+ 27U,
Z 0)
where GY = Siz)(Ii ® T,)T; and
1 h
So=15 >, 7S 21)

Therefore, S;, I;, T; and U; (i = 1,-- - , h) in Eq. (15) can
be solved by implementing sequentially the following
four multiplicative update procedures,

AixlliTXQfo?,UiT =+ 2(7‘1‘ 4+ )\)Sl
Slxl(IFIZ)XQ(TZTTz)Xg(UlTUi) + 27}80 ’
(22)
where A ©® B denotes the elementwise product of
matrices A and B;

Aiy(GDT +2BLITT; + 201,

§i=80

I =1 : 23
© GG 2551, (23)
A; o0 (GDT 4 28T, TET, 4+ 2)0T;
T,GT(GT)T 4+ 2BS['T;
A; 3y (GO + 28U,UTU; + 22\U;

U;GY(G))T +2B57U;
In each iteration, when updating one variable, we
fix the other variables. The details of the sub-tensor

completion algorithm for TTC2 are described in Al-
gorithm 2.

7 EXPERIMENTS
7.1 Dataset

To evaluate the effectiveness of the proposed TTC
framework, we conduct extensive experiments on a
real-world NUS-WIDE-USER dataset, which is ex-
tended from the widely-used NUS-WIDE dataset [43].
NUS-WIDE contains 269,648 images with 5,018 u-
nique tags collected from flickr.com, but does not
involve the user information that is very crucial in
our work. Thus we crawled the user information
according to the image IDs provided in NUS-WIDE
from flickr.com by using its APIL Since some images
have bad links, or are deleted by their owners, we

Algorithm 2 Sub-tensor Completion

Input:
Sub-tensor A;, sub-similarity matrices St ST, SY (i =
1,---,h), ranks R;, Ry and R3, parameters § and A.
Output: _
Optimal low-rank tensor A; (i =1,---,h).
Initialization: Randomly initialize S;, I;, T; and U; (i
1,---,h).
1: Compute Sp with Eq. (21).
2: foreach i€ {1,--- ,h} do
3:  repeat
4 Update S; with Eq. (22).
5: Update I; with Eq. (23).
6: Update T; with Eq. (24).
7.
8

Update U; with Eq. (25).
:  until Convergence.
9:  Update So with Eq. (21).
10:  return A; = S; X1 I; X2 T; x3 Us.

11: end for
TABLE 1
NUS-WIDE-USER Dataset.
Descriptions Numbers
Image size 247849
Tag size 5018
User size 49528
Concept size 81
Tags per image 8.47
Images per user 5.0

only obtain 49,528 user IDs and 247,849 images to
construct NUS-WIDE-USER, as shown in Table 1.
NUS-WIDE-USER also includes ground-truth of 81
concepts for the images. In experiments, we evaluate

the performance of social image tag refinement by
__ 2XPrecision xRecall
F-score = Precision+Recall *

7.2 Parameter Setting

For tri-clustering, we evaluate the sensitivity of the
cluster number, as shown in Figure 6. We can see
that the tag refinement performance is insensitive to
the cluster number if it is within a suitable range.
The proposed method achieves good performance on
NUS-WIDE-USER when the value of I’ is about 40,
the value of {7 is within [10, 15] and the value of
IV is within [12, 18]. In experiments, we set 11 = 40,
IT = 10, and IV = 12. The percentage p of the
random sampling in each iteration is set to 50%. The
radius parameter o in Eq. (1) is set to 2.5 and the
weighted coefficient a; in Eq. (2) is set to 0.9 empir-
ically. Figure 7 shows the convergence curve of the
optimization in Algorithm 1. It achieves convergence
after 20 iterations.

For pruning strategy, since Candes et al. in [41] have
proved that it seems extremely difficult to complete
an approximatively low-rank matrix by matrix com-
pletion on the super-sparse matrix, the value of 0 is
selected according to the practical principle of tensor
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Fig. 6. Performance in terms of F-score by varying the
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Fig. 7. Convergence curve of the proposed tri-
clustering optimization algorithm.

completion. In this work, we set § = 0.80 and finally
obtain M = 2,814.

For sub-tensor completion, in order to obtain the
optimal weighting parameters § and A of regular-
izations, we explore the affection of different pa-
rameter settings by employing the grid-search s-
trategy. To balance the convenience and the ef-
fectiveness, we explore the optimal parameter set-
tings on a smaller but representative dataset, a
subset with 50k images and corresponding users
(called NUS-WIDE-USER-50k) of NUS-WIDE-USER.
We set 5 € {0.0001,0.001,0.0015,0.01,0.015,0.1}, X €
{0.0001,0.001,0.0015,0.01,0.015,0.1} to tune the val-
ues of 3 and \. Figure 8 shows the impacts of 3 and
A on the average F-score in a certain sub-tensor. Then,
we can achieve the optimal performance for this sub-
tensor completion when 5 = 0.01 and A = 0.0015. The
sub-tensor completion needs about 20 ~ 30 iterations
to converge for different sub-tensors.

7.3 Compared Methods

In the experiments, we compare the proposed ap-
proach with three image tag refinement methods. The
original tags are also employed as the baseline.
o Original Tagging (OT):
contributed tags.

the original user-

Fig. 8. Parameter tuning results of parameters g and
A

o Tag Refinement based on Consistency between
Visual and Semantic similarity (TRVSC [13]).

o Tag refinement towards Low-Rank, content-tag
prior and error sparsity (LR [4]).

o Tag refinement based on Multi-correlation Regu-
larized Tensor Factorization (MRTF [26]).

For the parameter settings of LR and MRTE, we
adopt the same way as the TTC, and use the grid-
search strategy over the given discrete intervals to ob-
tain the optimal parameters based on the subset NUS-
WIDE-USER-50k. For TRVSC, the values of model
parameters can be found in [13].

7.4 Comparison and Analysis

All approaches in the experiments are executed us-
ing MATLAB on a DELL Server with a 12-core 2.67
GHz CPU and 32 GB memory. The convergence time
of tri-clustering is about 5.0 hours. Figure 9 shows
some examples of the generated tri-clusters, i.e., sub-
tensors, where the data surrounded by the same solid-
line box belongs to the same group. All the images,
tags and users are clustered into several groups. It
is noted that: 1) the user, image and tag information
are equally important in the tri-clustering process;
2) the group results are decided by all the three
kinds of information (i.e., image, tag and user); 3) the
image, tag and user data within the same group are
extremely close. For example, in the first group, all the
images not only have the similar visual contents, but
also have the common users (e.g., “34134691@N00”,
“64725810@N00”) and the common tags (e.g., “cas-
tle” and “Germany”); in the second group, the im-
ages have some common users (e.g., “7761395@N02”,
“14645458@N00”, and “20791254@N00”) and some
common tags (e.g., “California” and “aerial”), while
some of the images are visually similar (the third
image and the sixth one).

Figure 10(a) shows the average F-scores obtained
by different image tag refinement methods'. We find

1. LR and TRVSC is performed on NUS-WIDE-USER without the
user data since these methods do not consider the user information.



10 SUBMISSION FOR IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016

owner 34134691@N00

34134691@N0O 34134691@N00 34134691@N00

image

34134691@N00

30741231@N00

34134691@N00 64725810@N00 64725810@N00

Vrrlrarsl\e history éé;many c;ét\e history né{lire

togged . castle history germany 4‘ .

geotaggss ; 1 g explore o

tags google community map Qiter map sarth square past past
oxploro. explore past

castles stone germany germany vineyard flag
interesting ancient... burg...

square interestingness
explore wikipedia past

ancient popular

image

sanfrancisco california vivid
tags  beaufiul color unitedstates salt
vivid shrimp aerial..

california park shadow sky aerial
panorama cloud mountain
mountains aerial beautiful...

california usa kite america missing
memorial war flag patriotic aerial...

california above kite america
missing flag aerial american

ocean california beach surf
waves pacific aerial
pacificocean seals

losangeles raw aerial

owner

38172271@N00

38172271@N00 38172271@N00

image

china light people night square
earthquake candles mourning
natural emotion...

china light people night square:
sarthquake candles mouming
natural emotion...

china people night square
tags earthquake candles mourning
natural emotion flag...

52996275@N00

china light people night square
earthquake candles mouming
natural flag...

52996275@N00 52996275@N00 56176680@N00

light people night square
earthquake candles mourning
natural emotion flag...

light people night square
mouming natural

china earthquake

owner 65196834@N00 65196834@N00 65196834@N00

80835774@N00

80835774@N00

image

kids children botswana mammals

africa nature animals wildlife 3‘";3 wild “-“Ie a"‘c‘g“rm"e ‘;"‘":3‘5 africa nature animals wildlife ﬂ":ca b:W :‘:‘TT
nalre animl widlfe dleghans ’ natre beaui
tags  elephants botswana mammals i coceup batswana mammals panasonic elephants outdoors colrul

pretly babies nalive

afica elsphantnature:
beautiul bids
autdoors wings colorful

aftica wild elsphant cute
nature beautiul animals
dlaseup kids sutdoars.

africa wild elephant nature
animal mammal wildlife safari
trunk namibia tusks etosha

africa wild elephant nature beautiful
outdoors colorful pretty native wildlife.

county blue school students
tags  computer logo penguin michael
education lab...

blue school girls boy students
wall computer penguins
education room...

hardwars edusation keyboard lab media
technlogy

schiool computer logo carpet
penguin hardware gentoo
education lab media...

school girls boy students work
computer robot education lab
media...

ool white h\;:k history m\ke
make kids club computer...

logo hardware student
education lab media...

Fig. 9. Visualizations of the obtained tri-clusters by the tri-clustering method. The data surrounded by the same
solid line box belong to the same sub-tensor. Here, we list no more than 10 tags for each image and no more
than 9 images for each tri-cluster due to the space limitation.
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Fig. 10. Average performance of different methods for
tag refinement.

that besides the original tagging, TRVSC has the worst
performance, since it does not consider the distinctive
characteristics of the dataset, i.e., low-rank and error
sparsity. That is why LR is more superior compared to
TRVSC on the sparse dataset. MRTF and TTC utilize
the inter- and intra- relations among images, tags and
users, while LR only leverages the relations between
images and tags. Thus MRIF and TTC (including
TTC1 and TTC2) perform better than LR, which shows

the advantage of incorporating the user information.
Although the tensor models inter-relations among
the images, tags and users, it also brings in a new
challenge, i.e., the more severe sparsity. As a result,
MRTF’s performance degrades since it cannot well
address this super-sparsity problem. Fortunately, with
the previous processing of the tri-clustering, TTC can
well address the sparsity problem of the 3-rd order
tensor. Thus it significantly outperforms all the other
methods. Moreover, the F-score obtained by TTC2 is
0.554, which is about one percent higher than 0.543 of
TTC1, since TTC2 considers the dependency between
the sub-tensors while TTC1 does not. Besides, we
show the false positive rates of all the approaches in
Figure 10(b). We can see that TTC (including TTC1
and TTC2) achieves lower false positive rate than the
other methods. Statistically, the average number of
the user-provided tags per image on the test set is
8.47, while it becomes 10 after applying the proposed
method. After tag refinement, the average number
of added tags per image is 3.56, while the average
number of deleted tags per images is 2.03.
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Fig. 11. Detailed F-scores on the 81 concepts by different methods. For some special geo-related tags (e.g.,

“airport”, “beach”, “garden” and “harbor”), event tags (e.g., “earthquake”, “soccer”, “surf” and “wedding”) and

ambiguous tags (e.g., “fox”, “map” and “rocks”), which are denoted with red dotted line boxes, the proposed

methods show remarkable improvements. Moreover, TTC2 outperforms TTC1 for the very rare tags (e.g., “book”,

“map”, “soccer”, “surf” and “zebra”), which are denoted with yellow dotted line boxes.

Then we analyze the F-scores obtained by different between images and tags.

methods on all the 81 concepts and show the results Since the frequently-used tags (e.g., “clouds”,
in Figure 11. Compared with OT, we find that all “grass”, “person”, “sky” and “water”), as enclosed
the tag refinement methods improve the quality of by blue dotted line boxes in Figure 11, are not
almost all the 81 tags. By utilizing the user informa- very sparse, the obtained F-scores on them do not
tion, MRTF and TTC achieve better performance than achieve significant improvements by using the pro-
LR and TRVSC, especially for those summarized or posed methods. For most tags, the F-scores obtained
complex tags (e.g., “dancing”, “military”, “nighttime”, by TTC are higher than or equal to the ones obtained
“cityscape” and “protest”). Besides, for some special by the other methods. The performances of TTC1
geo-related tags (e.g., “airport”, “beach”, “garden” and TTC2 are very close for most of the tags except
and “harbor”), event tags (e.g., “earthquake”, “soc-  for some relatively special tags (e.g., “book”, “map”,
cer”, “surf” and “wedding”) and ambiguous tags (e.g., “soccer”, “surf” and “zebra”), which are denoted
“fox”, “map” and “rocks”), which are denoted with with yellow dotted line boxes. After observing the
red dotted line boxes in Figure 11, the proposed meth- number of relevant images for the 81 concepts, we
ods show remarkable improvements compared to the notice that these tags are rarer in images. Therefore,
other methods, since they can solve the super-sparsity it is concluded that TTC2 is more robust than TTC1
problem and well uncover the latent relationships especially for the very rare tags.
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Fig. 12. Exemplary tag refinement results by the
proposed framework. For each image, the top 5 tags
are shown.
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We also present some image tag refinement results
of TTC2 for some specific cases to demonstrate the
effectiveness of the proposed framework. For each
image, the top 5 refined tags are shown in Figure 12.
Our method is effective for the tags that are hard
to infer by only using the visual and tag informa-
tion, but can be discovered by utilizing the user
information. For example, as shown in Figure 12(a),
the Golden Gate Bridge is a landmark of California,
thus this image should be tagged with the geo-tags
“Californian” or “San Francisco”. It is very difficult to
restore the relation between the geo-tag “Californian”
and the image by only mining the visual and tag
information, but the proposed methods can do it well
based on the user background information. Similarly
in Figure 12(d), since the Malmo Building is regarded
as one of the most famous symbols in Sweden, it is
reasonable to assign the tag “Sweden” to this image.
After refinement, the tag “African” is added to the
image in Figure 12(c). Although we can hardly infer
the relation between the image and “African” from
either its visual content or tag semantic relations, one
credible explanation is that the user who uploaded
this image also uploaded other images with the tag
“African” by mining the user information.

Besides completing the missing tags, the proposed
TTC method can also remove the noisy tags. Examples
in Figure 12(c) and (f) denote the cases with origi-
nal noisy tags, while Figure 12(a) and (d) show the
cases with original incomplete and missing tags. We
can also see that TTC can significantly improve the
quality of the tags for locally abstract images, e.g.,
Figure 12(c) and (d), and globally complex images like
Figure 12(a). In other words, besides improving the
tag quality for common images, the proposed method
can also be used to refine the tags of the locally
abstract images and the globally complex images with

135 7 9 111315171921232527293133353739414345474951535557596163656769717375777981
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Fig. 13. The performance comparisons of co-
clustering and the proposed tri-clustering. (a) and (b)
are the individual F-scores and average F-score re-
spectively. In (a), horizontal axis denotes the 81 con-
cepts.
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the context information and semantic relations.

To illustrate the superiority of the proposed tri-
clustering method, we compare it to the co-clustering
methods. To adapt co-clustering into the proposed
TTC framework, we extend the co-clustering from 2
dimensions to 3 dimensions by changing the defini-
tion of tri-cluster mean in Eq. (6), namely Tir ST RV =
7;3”5 wv- For this extended co-clustering in TTC1
and TTC2, we name them as TTC1+co-clustering and
TTC2+co-clustering, respectively. The individual and
average F-scores are plotted in Figure 13. For almost
all the 81 concepts, TTC1 and TTC2 perform better
than TTC1+co-clustering and TTC2+co-clustering, re-
spectively. Therefore, the proposed tri-clustering can
improve the tag refinement performance compared
to the extended co-clustering method. Moreover, the
running time of the proposed tri-clustering is about
5.0 hours, which is less than the 9.8 hours of co-
clustering on NUS-WIDE-USER.

We also compare TTC with MRTF in terms of the
computing time and present the results in Figure 14.
We can see that TTC1 executes much faster than MRT-
F, while TTC2 executes a bit slower than MRTF. Thus
we can conclude that the proposed TTC framework
performs better than MRTF in terms of both effective-
ness and efficiency, while assuming the independence
of sub-tensors. Actually, for practical applications,
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image tag refinement is a pre-processing step of tag-
based image retrieval, and is usually implemented in
an off-line way, in which the effectiveness is much
more important than the efficiency. In this scenario,
considering the dependence of sub-tensors in the
proposed framework is more practical and applicable
to promote the refinement accuracy.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel tri-clustered
tensor completion (TTC) framework, which has col-
laboratively explored the user information, visual con-
sistency and tag semantic correlation, to improve the
performance of social image tag refinement. In this
framework, the tri-clustering and sub-tensor comple-
tion methods have been proposed in order to ad-
dress the challenges of large-scale and super-sparse
tensor completion. In particular, it divides the o-
riginal image-tag-user associated tensor into sub-
tensors by the proposed tri-clustering method. And
then we investigate two strategies to complete these
sub-tensors by considering (in)dependence between
the sub-tensors. Experimental results on a real-world
community-contributed database have demonstrated
the superiority of the proposed framework compared
with the state-of-the-art methods. In the future, we
plan to make the proposed framework applicable to
social-aware video tag refinement.
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