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Abstract—In order to enable the model to generalize to unseen
“action-objects” (compositional action), previous methods encode
multiple pieces of information (i.e., the appearance, position, and
identity of visual instances) independently and concatenate them
for classification. However, these methods ignore the potential su-
pervisory role of instance information (i.e., position and identity)
in the process of visual perception. To this end, we present a novel
framework, namely Progressive Instance-aware Feature Learn-
ing (PIFL), to progressively extract, reason, and predict dynamic
cues of moving instances from videos for compositional action
recognition. Specifically, this framework extracts features from
foreground instances that are likely to be relevant to human actions
(Position-aware Appearance Feature Extraction in Section III-B1),
performs identity-aware reasoning among instance-centric fea-
tures with semantic-specific interactions (Identity-aware Feature
Interaction in Section III-B2), and finally predicts instances’ posi-
tion from observed states to force the model into perceiving their
movement (Semantic-aware Position Prediction in Section III-B3).
We evaluate our approach on two compositional action recognition
benchmarks, namely, Something-Else and IKEA-Assembly. Our
approach achieves consistent accuracy gain beyond off-the-shelf
action recognition algorithms in terms of both ground truth and
detected position of instances.

Index Terms—Compositional action recognition, compositional
generalization, human action recognition.

1. INTRODUCTION

UMAN action recognition aims at understanding the be-
haviors of humans from given video sequences. In the
past decade, inspired by the success of deep learning in image
representations, many 2D [2], [3], [4] and 3D [5], [6], [7], [8]
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neural networks have been designed to extract representations
from videos. Existing video backbones work well for basic
human actions [9], [10] involving only body motion and posture
(such as walking and jumping), but there is still a long way to go
in understanding complex activities involving spatio-temporal
interactions between humans and objects [11], [12].

Having said that, why do humans easily understand a complex
action (e.g., “Moving sth. and sth. closer to each other” as shown
in Fig. 1(c)) even when it is performed with different objects in
various environments? Their ability to perform compositional
reasoning between entities in the natural world is probably the
most plausible explanation [13]. For example, humans often
focus on various visual instances (i.e., two boxes and two hands)
in the scene of Fig. 1 (c) and then recognize the whole activity by
observing the relative change of the distance between instances.
This ability helps humans to learn some knowledge that is easy to
generalize to the novel environment with unseen combinations.
Inspired by this, we hope to make machines show a similar
capability in action recognition, namely, compositional action
recognition [11], [12], which requires the “action-object” pairs
in training and testing sets do not overlap.

According to the above definition, the main challenge of
compositional action recognition is the out-of-distribution [11]
issue of the testing set. However, it is well known that deep
models inevitably produce inductive biases [14] between the
visual input and labels on the training set when the samples are
insufficient. For example, the confusion of actions in Fig. 1 (c)
and (d) may be caused by the similar appearance. To allevi-
ate this issue, an intuitive solution is to introduce additional
modal information, such as position information (e.g., instance
positions that can be used to easily distinguish Fig. 1 (c) from
(d)). However, the position information does not always work
on some actions involving the property of objects, e.g., the paper
can be torn by hands in Fig. 1 (b) but the spoon can not be in
Fig. 1 (a). Therefore, integrating multiple information has be-
come a promising solution for compositional action recognition,
but it is also extremely challenging.

Previous work (STIN [11]) directly encodes instance infor-
mation (e.g., position and identity) independently into features
for interaction and then concatenates them with global appear-
ance feature for classification (as shown in Fig. 3), which is
feasible but rough. We hold that instance information is critical
for motion feature extraction at different stages to understand
compositional actions. For example, when humans understand
complex actions, they often need to focus on moving objects
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(a) pretend to tear sth. not tearable

3

A left-hand, right-hand, paper (torn)
instances are close to each other, and moving slightly

left-hand, right-hand, spoon (untearable)
instances are close to each other, and moving slightly

A Appearance Semantic

Fig. 1.
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(c) move sth. closer to sth. e

A left-hand, right-hand, polish, box
<> instances are moving towards each other

81

T

ach other

A left-hand, right-hand, polish, box
instances are moving away from each other

(d) move sth. and sth. away from each other

Compositional examples in Something-Something [1]. We annotate all instances (i.e., hands and objects) by the cyan boxes and highlight the major

difference by the red dashed boxes or lines in each group of comparisons. By observing the appearance changes of objects (e.g., untearable spoon and torn
paper), humans can easily distinguish between (a) and (b). In contrast, humans understand “closer to” in (c) and “away from” in (d) by observing the relative
displacement (shown as the red dashed line) among instances rather than by the objects’ appearances. Motivated by this, we aim to fuse different types of information

to understand compositional actions. Best viewed in color.

and reason about their relationships with the help of identities.
Furthermore, if people can accurately predict the future motion
of instances (related to the action), they must already have a good
understanding of the observed action. Inspired by these points,
this work aims at injecting instance information (position and
identity) into the process of video feature learning progressively.

Inspired by this, we propose a Progressive Instance-aware
Feature Learning framework for compositional action recog-
nition. Progressive Instance-aware Feature Learning achieves
compositional generalization by endowing the model with the
ability to extract, reason, and predict dynamic cues of moving
instances, with the help of instance information. It extracts
features from moving instances that are most likely to be related
to action semantics; performs identity-aware reasoning among
them to earn semantic-specific relational structures, and finally
predicts their future position from observed states to enhance
the model’s capability to motion perception. Specifically, the
framework is implemented via the following three steps. i)
Position-aware Appearance Feature Extraction: builds instance-
centric appearance representation from images according to
instance positions and combines them with non-appearance fea-
tures (from position and identity information [11]) into instance-
centric hybrid features; ii) Identity-aware Feature Interaction:
builds identity-aware pairwise relationships among these hybrid
features in the latent space to generate semantic features for each
instance; iii) Semantic-aware Position Prediction: projects the
semantic features back to position space by an auxiliary task of
instance position prediction, to enhance the model’s perception
of objects’ movement.

The proposed approach is evaluated on two challenging
datasets: Something-Else [11] and IKEA-Assembly [15]. Ex-
perimental results show that our approach significantly outper-
forms state-of-the-art methods [6], [11], [16] on compositional
action recognition, regardless of whether the object positions
are labeled or detected. In particular, on the Something-Else

dataset, our approach achieves 2.7% and 3.5% improvements on
top-1 and top-5 accuracy with detections, respectively, compared
with [11]. In addition, our approach shows good generalization
ability in few-shot setting.

Our contributions can be summarized as:

® We propose a novel Progressively Instance-aware Feature
Learning framework which progressively injects instance
information (position and identity) into the video feature
extraction at different stages.

® [Instance-aware feature learning is progressively imple-
mented at different stages as 1) extracting instance-centric
features with the help of position; ii) guiding the feature
interaction through identity information; iii) predicting the
position from semantic video features.

e Comprehensive experiments on two datasets demonstrate
the effectiveness of our approach and some diagnostic
studies show the interpretability of our approach.

The rest of this paper is organized as follows. Section Il briefly
discusses related work on activity recognition, the composi-
tionality of activity, instance-centric video representation, and
video prediction. In Section III, we present the formulation of
compositional action recognition and our approach as also the
implementation details. We then show the results of a number
of experiments on two datasets, i.e., Something-Else and IKEA-
Assembly and conduct a comprehensive analysis, in Section IV.
Finally, our work is concluded in Section V.

II. RELATED WORK

In this section, we briefly review the traditional action recogni-
tion task, point out its bottleneck and then introduce the compo-
sitionality in the activity we are concerned with. Moreover, two
related technologies (i.e., instance-centric video representation
and prediction in the video) used in the proposed approach are
reviewed for better understanding.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 06,2023 at 12:38:49 UTC from IEEE Xplore. Restrictions apply.



YAN et al.: PROGRESSIVE INSTANCE-AWARE FEATURE LEARNING FOR COMPOSITIONAL ACTION RECOGNITION

A. Human Action Recognition

Recognizing the behaviors of humans in videos has been a
fundamental problem in the computer vision [3], [7], [16], [17].
In recent years, researchers have been scaling up the video
databases (e.g., HMDBS51 [10], UCF101 [9], Charades [18],
Something-Something [1], ActivityNet [19], and Kinetics [20])
and building numerous powerful backbones (e.g., TSN [4],
C3D [7], I3D [5], TSM [21], SlowFast [22] and TEA [23])
on them. However, in real world scenarios, human behavior is
usually instantiated by objects or environments. These proposed
algorithms are still not robust to novel combinations of known
actions and objects [11], [24], [25], which hinders the application
action recognition technology. Here, we believe that endowing
existing models with compositional generalization [26], [27]
may be an urgent and promising direction of action understand-
ing.

B. Compositionality in Activity Recognition

Human activities are composed of a set of subactions in the
temporal domain [28], [29] and various subjects and objects in
the spatial domain [12], [30]. Recent works proposed composi-
tional annotations or settings based on some popular video-based
datasets [1], [18]. For example, Materzynska et al. [11] provided
object bounding box annotations for the Something-Something
dataset [1] and presented a compositional setting in which there
is no overlap between the verb-noun combinations in the training
and testing sets. In addition, built upon Charades [18], Action
Genome [12] decomposed activities into spatiotemporal scene
graphs as the intermediate representation for understanding
them. To control the scene and object bias, Girdhar et al. [24]
created a synthetic video dataset, CATER, in which the events are
broken up into several atomic actions in the spatial and temporal
domains. In this work, we focus on generalizing compositional
action to novel environments by progressively injecting instance
information (position and identity) into video feature extraction.

C. Instance-Centric Video Representation

For video understanding, previous works [5], [16], [21], [22],
[31] focused on designing deep and powerful backbones to
extract appearance features from each frame. However, it is
difficult for these approaches to mine rich relationships [6],
[12], [32], [33] between different instances (objects or hands
or persons, etc.) in the spatial and temporal domains. To this
end, some recent studies [6], [17], [30], [33], [34] focused
on extracting instance-centric representations from videos and
building the spatial and temporal relationships among them.
For example, Wang et al. [6] represented videos as space-time
region graphs and modeled the long-range relationships among
regions for action recognition. Similarly, Baradel et al. [30]
and Ma et al. [33] designed more sophisticated neural networks
with the ability to reason about the spatio-temporal interactions
among the semantic instances/objects in videos. In this paper,
we construct instance-centric representations from both multiple
information for compositional action recognition.
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D. Predictability of Motion

Predicting small image patches [35], [36], [37] or full
frames [38], [39], [40] in videos has received increasing attention
in recent years. A line of recent works [41], [42], [43], [44], [45]
focused on disentangling each frame into several instances and
predicting their state in terms of mass, location, velocity, efc. The
sequence prediction mechanism has also been used in proxy
tasks [46], [47], [48] to learn self-supervised representations
for video. For example, Oord et al. [48] proposed Contrastive
Predictive Coding to learn effective video representations by
predicting the future frame-level feature in latent space. Han et
al. [46] designed a Dense Predictive Coding framework to learn
dense spatiotemporal video embeddings by recurrently predict-
ing the future. In this work, we predict the location and offset
of instances from instance-centric semantic representations to
promote the fusion of multiple information.

III. APPROACH
A. Problem Statement

Formally, given a video with 7" frames, N instances (e.g.,
objects and hands/persons), and the associated tracklets, we
denote the RGB input of this video as V' € RT>*HxW>3 (fy
is the height and W is the width), the tracklets of instances
as B € RT*N*4 the object identity as C € RT*N*1 (indi-
cates only “hand/person” and “object”), and the activity label
of this video as [. We extract the visual appearance features
A € Rz H*Wxdia from the video V via I3D [5]. B and C can
be ground-truth as well as predictions. Compositional activity
recognition [11] aims at understanding unseen combinations
of action (performed by hands or persons) and objects in each
video, which brings up the problem of out-of-distribution gen-
eralization [26], [27].

Previous methods [11], [49] often integrate multiple features
from different sources of information for this task. For exam-
ple, appearance features extracted from video V' contain the
attributes of instances or the environment. Beyond that, we can
also obtain position features that describe the trajectories (i.e.,
motions) of instances from tracklets B and the object identity
feature used to identify each instance from C. In general,
appearance features take on thousands of dimensions, but non-
appearance features (from position and object identity) can be
represented by vectors of several tens of dimensions.

In [11], the authors showed that both appearance and non-
appearance (position and identity) information are useful for
understanding a complex compositional activity. However, the
features independently extracted from B, C, and V  are simply
concatenated for fusion (as shown on the left of Fig. 3). In our
view, different information for the same video may complement
each other instead of being independent during feature extrac-
tion.

B. Progressive Instance-Aware Feature Learning

To this end, we propose a simple yet effective framework
that progressively fuses multiple information at different stages
of video feature extraction (Fig. 2). The general formulation of
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Overview of the proposed framework. It takes 7" frames sampled from a video, the associated position, and identity information (distinguishing only “hand”

or “object”) of each instance as inputs. This framework is composed of three steps. Position-aware Appearance Feature Extraction (PAFE) (in Section III-B1): pastes
a set of boxes on the video to extract instance-centric appearance features and concatenate them with position features into hybrid features; Identity-aware Feature
Interaction (IFI) (in Section I1I-B2): builds pairwise relationships between instance-centric hybrid features with the consideration of object identity (only identifying
the hand or object). Semantic-aware Position Prediction (SPP) (in Section III-B3): recovers part of the high-level information from semantic features (output from
IFI) by predicting the future position information (e.g., coordinate and offset) of each instance. Best viewed in color.

this framework can be abstracted as follows:
G =G(F(A,B,C),C),
B :Eux(G)azzﬂeg(G) (])

The framework takes as inputs A, B and C, which denote the
appearance features extracted from video V, the position (track-
lets) and object identity, respectively. Band Z represent the pre-
dicted position information and instance-centric spatio-temporal
features, respectively.

Different from the most related work STIN [11] (more detail
can be found in Section III-C), we aim at injecting instances
information (position and identity) to the video feature learning
process progressively via the following three functions. First,
F(-) aims at making full use of instance position information
(B) to enhance instances’ motion cues when extracting ap-
pearance features (A) from videos and output hybrid features
from three types of information based on instances; Second,
G(-) aims at further exploring the spatio-temporal dependencies
among instance-centric hybrid features with the consideration
of object identity C' and generating high-level semantic repre-
sentations G; Third, T,x(+) is an auxiliary function designed
to project high-level semantic representations G' back to the
low-dimensional space by estimating B.

In addition, 7 (-) aggregates instance-centric features in the
temporal domain for final recognition. Note that F(-), G(-), and
Taux(+) can be designed in different forms with the requirement
that F(-) is built on instances rather than frames, G(-) needs to

further leverage more existing supervision to promote feature
fusion in the latent space, and T,x(-) can be free from the
additional annotation.

1) Position-Aware Appearance Feature Extraction (PAFE):
As mentioned above, function F(-) aims at enhancing in-
stances’ motion cues with the help of instance position in-
formation while extracting appearance features from videos.
In this work, we adopt a simple method: extracting instance-
centric appearance representations from videos according to
the position information, which highlights the dynamic clues
from local areas (instances) and relieves the inductive bias from
backgrounds.

Specifically, we sample T" frames from each video and employ
13D [5] to extract the spatiotemporal appearance representation
from the video V. The output of the last convolutional layer
is a feature map A with dimensions of % X H X W X dg,. To
obtain NV instance-centric features, we apply a RolAlign [50] on
the feature map A to crop and rescale the appearance feature for
each instance according to the associated tracklets B. Instance-
centric appearance features are denoted as F'ypp € RZ XNy
where N is the number of instances.

Furthermore, we combine the appearance features with non-
appearance featuresusedin[11], i.e., the position features F'y, €
Rz *Nxdw from tracklets B and object identity features F'jq €
Rz *Nxdi from object identity C' by word embedding. Fyy
and F'jq are concatenated and embedded into non-appearance
representation F'on_app € R % XN *dnon_app via an MLP, Finally,
we concatenate F'yy, and Fyon_app at the last dimension as
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instance-centric hybrid representations F' € R *Nxdwia for
each video, where dpypria = dapp + dnon_app-

2) Identity-Aware Feature Interaction (IFI): Instance-
centric hybrid representation F' extracted from each instance
is isolated now and lacks the spatio-temporal semantics
among multiple source information. Consequently, it is
natural to model latent interactions among these instances
via many choices, including Non-Local [16], STIN [11],
STRG [6], and Transformer [51]. However, we know that the
relationship between different visual instances is different.
For example, the relationship between objects generally
reflects position-related semantics (e.g., “on the left,” “away
from”), while the relationship between humans (hands) and
objects often reflects motion-related semantics. Therefore,
the differentiated instance-centric feature interaction helps
to enhance the generalization of visual features. Here, we
simply instantiate function G(+) by constructing pairwise spatial
relationships between each instance with the consideration
of their identity and exploring the temporal dependencies via
sequential models.

Spatial Modeling. Different from previous relational mod-
ules [11], [16], [17] that construct relationships between a
specific feature node and its neighbors indistinguishably, we
model the different types of pairwise relationships between each
instance with the consideration of their identities. Formally, we
represent each video by a set of instance-centric hybrid features
as F € R¥>*Nxduwa gand perform spatial reasoning [16], [52],
[53] among them as follows:

gi=g(F,cy=vS|fiv S on([fLF)

V(i,5)EEss

+ 2 oollFL D+ X dw([FLF]) ]

V(i,5) €€ V(,5) €0

2

where f! and g! denote the hybrid and spatial relational features
for the i-th instance at the ¢-th time step, respectively. [, ]
represents a concatenation operation used to compose a pair
of instance-centric features, i.e., f! and f%, where j # i. &,
&so, and &, represent different instance-pair sets (i.e., subject-
subject, subject-object, and object-object interactions, where
the subject indicates the hand or person) that can be defined
according to instance identity C. Functions ¢g(+), ¢so(-), and
®oo(+) are designed to encode different pairwise interactions, and
1S() is used to fuse them with original hybrid features f.. All
above four functions can be implemented by MLPs. This module
outputs instance-centric spatial features G' € R XN xdsem

Temporal Modeling. Given i-th instance’ spatial features,
G, € Rz "% we further fuse them along the temporal domain
as:

Z, = ﬂeg(Gi) _ wT (Cat (M_Seq([g%,...,g?} ;07>>) )

Notably, M_Seq represents a sequential model that is used to
capture temporal dependencies and is optional. Without M_Seq,
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this step degrades into a naive temporal concatenation used
in [11], [54]. It can be implemented via LSTM [55], [56] or
Transformer [57]. Cat(-) is used to concatenate all % outputs
from the sequential model M_Seq along the last dimension,
and T () is an MLP used to encode the concatenated features
for each instance. 8 denotes the learnable parameters used in
M_Seq. For each video, N instances’ spatio-temporal features
Z={Z,,Z,,...,Zy} areused to recognize the final activity;
refer to Section I1I-B4.

3) Semantic-Aware Position Prediction (SPP): To enhance
the model’s ability to perceive instance motion, we further
implement T, (-) by predicting the future position information
of each instance from the observed hybrid features. Inspired
by recent self-supervised action recognition methods [35], [58],
not only the absolute coordinates of instances but also their
relative offsets are predicted. Predicting “coordinate” is similar
to locating objects, but predicting “offset” focuses more on the
movement of instances. When the position information of each
instance is not inaccurate, predicting the coordinates is difficult
for training. Therefore, we combine these two objectives and the
function defined in (1) can be rewritten as:

[B, O] = Tax(G) = Decoder(Predictor(G)), (4)

where GG denotes instance-centric spatial features and Band O
are predicted coordinates and offsets, respectively.

Predictor. We first estimate the future state of each instance by
the observed features. Formally, given the previous ¢ observed
spatial features of the i-th instance as {g}, g7, ...,g'}, the (t +
1)-th state is predicted as:

g§+1 = M_Seq ({g%,g?,_.,,gﬁ};@"’), 5

Here, we denote Typs as the number of frames observed by the
predictorin each stepand t € [Tyys : Z). M_Seq is used to model
the temporal structure hidden in sequence data, and the last
output is viewed as the predicted state gf“ € R, It shares
parameters with the sequential model used in (3), and they are
trained synchronously.

Decoder. Given the predicted state gi*' for the i-th in-
stance in time t+ 1, we estimate its absolute position and
relative offsets (i.e., the difference between the centers of an
instance in two consecutive frames) via two simple linear layers
as (b, ol™] = (W, gt W] gt where W), € Rmix4
and W, € R%=*2_ B and O are padded with observed values
when t < Typs.

4) Training and Inference: During the training phase, our
approach not only needs to predict human activities but also
needs to estimate the position of the involved visual instances.
Therefore, the total objective function of our approach consisting
of recognition and auxiliary loss is defined as:

L = Lreg(#,Y) + Lax(B, 0, B,0), (©6)

where g, B, and O denote video-level prediction of activity,
predicted coordinates and offsets of tracklets, respectively. y,
B, and O are the corresponding ground-truths.

Recognition loss L, (-) is a simple cross-entropy loss that is
used to recognize the final compositional activities. It is defined
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where y is the one-hot-encoded ground-truth of activity and
Nv is the number of activity classes. We average-pool over N
instances’ spatio-temporal features {Z,, Z5, ..., Z y} output
via IFI to the video-level features Z*, and feed it to a linear layer
with the output dimension of Ny for calculating the prediction
scores 9.

Auxiliary loss L4, (+) designed to measure the error between
the predicted and ground-truth position information. It is simply
defined as the Euclidean distance between the prediction from
(4) and the ground truth and sums them over space and time as:

mzz(

vt i=1

At—‘rl

t+1 2
By H n
2

o~ o). ®)

I) and N is the number of instances in the
video. and o"Jrl are the ground-truth position and offset
converted from tracklets B, respectively. o/ ™! = (b!T! — bl)[:
2], where [: 2] takes only the previous two elements of vectors.
Inference. To obtain the final activity prediction I, we average
pool N instances’ spatio-temporal features Z as the video-level
representation followed by a softmax layer, as shown on the
right of Fig. 2.

where ¢ € [Tops,
bt—‘rl

C. Discussion

We compare our approach with the most related work,
STIN [11]in Fig. 3 to highlight our contributions. Overall, STIN
extracts features from instance information as a supplement
to conventional visual/appearance features for compositional
action recognition. Different from STIN, our approach treats
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instance information as a “‘supervisor” to guide the visual feature
extraction for enhancing its compositional generalization.
Specifically, as shown in Fig. 3(a), STIN directly extracts
features from instance information (position and identity) in-
dependently for interaction and concatenates them with global
appearance features (from whole frames) for classification,
which is feasible but ignores the dependence between the two
types of information. However, our approach aims at extracting,
reasoning, and predicting dynamic cues of moving instances
from videos progressively for improving the compositional gen-
eralization of existing action recognition algorithms, as shown
in the colored dotted arrows. This can be summarized as follows,
® To highlight dynamic cues of regions (visual instances)
most likely to be action-related, we extract instance-centric
appearance features according to position information.
(Section I1I-B1)
® To avoid undifferentiated associations between multiple in-
stances, we apply identity information to guide the process
of instance-centric feature interaction. (Section I1I-B2)
® Toenhance the model’s ability to perceive instance motion,
we predict the position of instances from semantic features
output from the interaction module. (Section I1I-B3)
The designs of the above modules follow the unified motiva-
tion, rather than independently or incrementally.

D. Implementation Details

1) Input: Our approach takes as input 7" frames ' sampled

from each video, and the associated tracklets and object identity
for N instances (hands/persons and objects, no more than four)
in the scene. Each frame is resized to a resolution of 224 x 224.
The tracklet of each object can be ground-truth boxes annotated
by humans or detections generated by various off-the-shelf
detection algorithms.

2) Network Architecture: For a fair comparison, we employ
the I3D model [5] built on ResNet-50 as the backbone unless
stated otherwise and more details are introduced in [6]. The
RolAlign [50] extracts region-based features for each instance
with a size of 3 x 3 on top of the last convolutional layer. Thus,
the RolAlign layer generates N X 3 X 3 X df, output features
for each video, which are then flattened and embedded into NV x
dapp via alinear transformation, where N = 4 and dfeq = dapp =
512.

In addition, the MLP used to fuse non-appearance features in
Section III-B1 and T (-) defined in (3) are composed of two
linear layers with output dimensions of 512; thus, dnon_app =
512 and dhybria = 1024. ¢s(+), dso(-), Poo(-) and 15(+) defined
in (2) are implemented by MLPs, each of which is a single
linear layer with an output dimension of 1024. For comparison,
the sequential model M_Seq used in (3) and (5) is implemented

!Following the standard evaluation protocol used in the previous works [4],
[11], [49], [59], we first divide each video into 7" segments of equal durations.
Then we randomly sample one frame from each segmentation for training
and sample the middle frame from each segmentation for testing. Previous
methods [11], [49], [59] for this task have used different numbers of frames
(where more frames are usually better). In our experiments, we set 7" to 8 for all
ablation studies, but also set 7" to different numbers for fair comparisons with
the previous methods.
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by an LSTM [56] or transformer [57], respectively, with two
layers, and the dimension of the hidden states is 1024. Tis used
in prediction is set to %.

3) Training: We train the proposed approach with Py-
Torch [60] on two NVIDIA TITAN RTX graphics cards. Overall,
we employ SGD with fixed hyper-parameters (0.9 momentum
and 10~* weight decay) to optimize all our models with an
initial learning rate of 10=2. The 13D model used in this work
is pre-trained on Kinetics-400 [20]. For a fair comparison, we
train our models with the batch size of 72 for the backbone of
I3D in 50 epochs and reduce the learning rate to 1/10 of the
previous one at epoch 35 and 45 following [11] unless specified
otherwise. For other different numbers of frames or backbones
used in experiments, we adopt the largest batch size within the
total memory of available GPUs. Some training details depend
on the case and will be described in Sections IV-B and IV-C.

IV. EXPERIMENTS

In this work, we evaluate our proposed approach on two
datasets, i.e., Something-Else [11] and IKEA-Assembly [15],
with the compositional setting. Additionally, the few-shot setting
and some diagnostic studies are applied to the experiments of
Something-Else. The details are as follows.

A. Dataset and Metrics

1) Something-Else: Something-Else [11] is built on
SSV2 [1] with the compositional setting forcing the
combinations of action and objects cannot overlap between
training and testing sets. Something-Else contains 174
categories of activities but only 112,795 videos (54,919 for
training and 57,876 for testing) selected from original SSV2 [1]
with the consideration of compositional setting. Specifically,
the objects and actions from SSV2 are divided into two disjoint
sets {Sa,Sp} and {S1,82}, respectively. With the novel
setting, only the action-object combinations from the set
{8184 + S2Sp} are used to train the model, but the model is
tested on {S1Sp + S2Sa }. Following [11], [59], we evaluate
our approach on this dataset with the standard classification
protocol and measure the top-1 and top-5 accuracy.

2) Ikea-Assembly: We further test the compositional gen-
eralization ability of our model on IKEA-Assembly [15], al-
though it does not have the above compositional setting. IKEA-
Assembly contains 16,764 video samples of furniture assem-
blies, each of which is annotated with one of 33 compositional
action classes, i.e., verb-object pairs. Each activity defined
in IKEA-Assembly is also composed of an action and an object
similar to Something-Else [11] but on a more granular scale.
In total, there are 12 actions and 7 objects in the original
version dataset. We split these samples in a compositional way
in which the combination of action and objects do not overlap
over the training and testing sets following [11], [59], leading
to 6 compositional activities. More details can be found in [59].
Following [59], we measure our approach via both the mean of
per class recall (macro) and micro averaged accuracy (micro) in
experiments due to the serious issue of class imbalance.
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TABLE I
RESULTS OF THE PROPOSED METHODS BUILT ON DIFFERENT VIDEO
BACKBONES. THE BASELINE METHOD SIMPLY AVERAGE-POOLS THE FEATURE
MAPS EXTRACTED FROM VISUAL BACKBONES INTO VIDEO FEATURES. “# FR”
DENOTES THE NUMBER OF FRAMES USED IN MODELS

Backbone # fr | Method Accuracy (%)
top-1 top-5

3 baseline | 40.0 69.3

Ours 60.4 86.0

I3D-ResNet50 [5], [6] 1o | baseline | 463 722
Ours 64.2 87.6

baseline | 48.4 76.8

TSM-ResNet50 [21] 8 Ours 623 873
baseline | 48.2 76.7

TEA-ResNet50 [23] 8 Ours 62.6 877

B. Results on Something-Else

We conduct some ablation studies of our approach and com-
pare it with the state-of-the-art methods on this dataset with the
standard compositional setting mentioned above. Beyond that,
the few-shot setting is introduced to test the proposed method,
following [11].

1) Ablation Study: Effect of Different Feature Extractors.
To verify that our proposed method is complementary to exist-
ing video representations, our approach applies different video
backbones (e.g., TSM [21] and TEA [23]). TSM and TEA
are initialized with weights pretrained on ImageNet [61] but
I3D-ResNet50 is initialized with weights pretrained on kinetics-
400 [20] (following [11]). The baseline in Table I removes all
proposed modules from our approach and directly pools (i.e.,
global-avg-pool) the feature map into a single vector for classifi-
cation. As shown in Table I, our approach steadily improves the
robustness of existing video representations on compositional
generalization problems. I3D relies on dense frames, thus it
shows low performance with only 8 frames compared with
TSM and TEA. The better the video representation is, the more
obvious the gain of our method is, indicating that our proposed
framework is orthogonal to existing video feature encoders.

Effect of Different Feature Interactions. In this work, our
IFI aims to introduce high-level information (i.e., category of
instance?) into relational reasoning among instance-centric rep-
resentations in the latent space. To verify the effectiveness of
such motivation, we compare IFI with several commonly used
category-agnostic spatiotemporal interaction modules (i.e., NL,
STRG, STIN, and Transformer), and the results are reported in
Table II. Without considering the identity of instances, our IFI
performs on par with existing methods and is even lower than
STRG [6]. However, by introducing instance identity informa-
tion, IF1 is significantly higher than existing interaction modules
and nearly 1% higher than the best method (i.e., STRG) with
detection. This shows the importance of identity for instance-
centric feature interaction.

Effect of Different Temporal Fusions. In this work, temporal
fusion is an important step for feature extraction and position

2We categorize instances that appeared in videos into only two classes, i.e.,
hand or object.
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TABLE I
RESULTS OF THE PROPOSED METHODS BUILT WITH DIFFERENT INTERACTION
METHODS. NL* [16], STRG* [6], STIN* [11], AND TRANSFORMER* [57] ARE
BUILT ON THE PROPOSED BASIC INSTANCE-CENTRIC JOINT
REPRESENTATIONS (EXTRACTED BY PAFE) FOR FAIR COMPARISONS

Interaction Module | Identity Accuracy (%)
top-1  top-5
NL* [16] 54.2 814
STRG* [6] X 56.4  83.6
STIN™* [11] 56.5 834
Transformer™® [57] 55.7  82.9
IFT (Ours) X 57.3  84.2
v 583 84.8
(a) with Ground-truth

. . Accuracy (%)

Interaction Module | Identity
top-1  top-5
NL* [16] 442  T1.3
STRG™ [6] X 459  73.2
STIN* [11] 44.1 T71.2
Transformer™ [57] 45.2 72.2
IFI (Ours) X 45.2  71.9
v 46.8 173.9

(b) with Detection

TABLE III
RESULTS OF THE PROPOSED METHODS BUILT WITH DIFFERENT TEMPORAL
FUSION METHODS

. Box Type | Accuracy (%)

Temporal Fusion GT DET | top-1  top-5
vV | 415 744

LSTM [56] v 604 86.0
vV | 415 744

Transformer [57] v 60.6  86.6
vV | 478 750

prediction. Here, we explore the effect of different temporal
modeling methods on the efficiency and performance of the
proposed framework. We try two different temporal fusion
methods, namely, LSTM [56] and Transformer [57]. Notably,
in this work, LSTM has 2 layers, and Transformer has 2 layers
with 8 heads. As shown in Table III, the performance of the
two modules is almost the same. Furthermore, in our approach,
there is little difference between these two modules in terms
of efficiency with limited video frames and layers. Specifically,
our approach with 2 layers of LSTM and Transformer requires
0.018 s and 0.017 s for the inference of one video with 16
frames, respectively. However, we recommend using the more
advantageous Transformer in practical applications that may
involve more frames. Because LSTM is difficult to optimize in
parallel, its computational efficiency is significantly lower than
that of Transformer when the sequence length is too large or the
model has too many layers.

Effect of Different Position Predictions. To determine the
effect of the prediction content of Semantic-aware Position
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TABLE IV
EFFECT OF DIFFERENT POSITION PREDICTIONS. “GT” AND “DET” ARE SHORT
FOR GROUND-TRUTH AND DETECTION, RESPECTIVELY

Position Pred 3 | Accuracy (%)
Box Type coord offset Pred Acc top-1  top-H
v 80.4 59.9  85.9
GT v 74.5 59.7  85.5
v v 84.0 60.4 86.0
v 74.9 48.6  76.1
DET v 69.0 495 765
v v 79.0 50.4 76.9
TABLE V

ABLATION STUDY ON SOMETHING-ELSE WITH THE COMPOSITIONAL SETTING.
“PAFE,” “IFI” AND “SPP” ARE SHORT FOR POSITION-AWARE APPEARANCE
FEATURE EXTRACTION, IDENTITY-AWARE FEATURE INTERACTION AND
SEMANTIC-AWARE POSITION PREDICTION, RESPECTIVELY. “GLOBAL FEA.”
REPRESENTS THE APPEARANCE FEATURES EXTRACTED FROM THE WHOLE
FRAMES. “GT”” AND “DET” ARE SHORT FOR GROUND-TRUTH AND
DETECTION, RESPECTIVELY

Accuracy (%)

Method top-1  top-5
Global fea. + STIN [11] 51.7 80.5
— | B1l: PAFE + STIN [11] 56.5 83.4
O | B2: PAFE + IFI 58.3  84.8
Ours: PAFE + IFI + SPP 60.4 86.0
Global fea. + STIN [11] 42.7  69.7
£ | Bl + PAFE + STIN [11] 441 712
O | B2: + PAFE + IFI 46.8 73.9
Ours: + PAFE + IFI + SPP | 47.5 74.4

Prediction, we also tried different forms of position prediction
with ground-truth and detected boxes, such as “coord,” “offset,”
and “coord+offset”. As shown in Table IV, in the case of the
ground truth, the difference in these three forms is not significant.
However, when the bounding boxes (detected) are not inaccu-
rate, the absolute position prediction alone is not conducive to
improving the generalization of our framework, but additionally
predicting the “offset” of these boxes helps to alleviate this
phenomenon.

Effectiveness of SPP. As shown in the third column of Ta-
ble IV, SPP with “coord” or “offset” prediction shows satisfac-
tory position accuracy using “GT” or “DET” boxes, indicating
its ability to perceive the motion tendency of instances to a
certain extent. Combining both of them significantly enhances
this ability.

We also visualize the prediction results of SPP with “coord +
offset” using “GT” boxes. For example, as shown in Fig. 4, we
sample 8 frames from each video as the input of our approach.
Thus only the instances in the last 4 frames are predicted by
SPP and the predicted position of objects or hands is near
to the ground truth. These results demonstrate the ability of
the proposed SPP to perceive instances’ motion, which further
improves the compositional generalization of our approach.
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Fig. 4.

Visualization results of Semantic-aware Position Prediction (SPP) on Something-Else [11]. Each row contains a sequence of frames uniformly sampled

from the raw video. The first image in each row shows the overall motion tendency of the object. The colored points are the center coordinates of instances. For
ease of viewing, only one instance’s position information is drawn in each sample.

TABLE VI
COMPOSITIONAL ACTION RECOGNITION ON THE SOMETHING-ELSE DATASET. FOR A FAIR COMPARISON, THE NUMBERS OF FRAMES FED INTO THE VIDEO
BACKBONE ARE SPECIFIED. “ENSEMBLE’” REPRESENTS WEIGHTED FUSION OF THE PREDICTION SCORES FROM TWO DIFFERENT MODELS TRAINED SEPARATELY.
ALL ENSEMBLE METHODS FUSE THE SCORES FROM DIFFERENT MODELS VIA “NAIVE SUM” UNLESS STATED OTHERWISE

Method # frames Accuracy (%)

top-1  top-5
13D [5], [6] 400 693 Method 4 frames | Accuracy (%)
STIN [11] 8 51.7  80.5 top-1  top-5
Ours 60.4  86.0 13D [5], [6] 400 693
13D [5], [6] 168 722 STIN [11] 8 42.7  69.7
STIN [11] 16 54.6  79.4 Ours 476 745
Ours 64.2 87.6 13D [5], [6] 168 722
Ensemble STIN [11] 1% 48.2  72.6
13D, STIN [11] 16 581 832 SOTIES [6], [11] ggi’ Zg'i
MGAF (SlowFast [22]) [59] 8,32 | 680 887 : :
CDN [49] 16 62.8 87.2 Ensemble
CDN (Log-sigmoid Sum [62]) [49] 16 64.5  88.2 13D, STIN [11] 51.5 T77.1
13D, Ours 641 87.6 STRG, STIN [11] 16 56.2  81.3
I3D, Ours (Log-sigmoid Sum) 16 66.1  88.2 I3D, Ours 57.0 82.1
TSM [21], Ours 68.5  90.7 (b) with Detection
TEA [23], Ours 68.8  90.3

(a) with Ground-truth

Effectiveness of Each Component. We further evaluate each
component of our approach using the ground-truth bounding
boxes and detections. The results are reported in Table V. The
state-of-the-art baseline is “Global fea. + STIN [11],” which
builds relational representations among instance-centric hybrid
features and concatenates them with the RGB appearance of
the whole frames (as shown on the left of Fig. 3). Notably, all
methods reported in Table V use the same setting and optimiza-
tion strategy.

With ground-truth bounding boxes, B1 achieves significant
gains in accuracy benefited by the instance-centric appearance
feature extracted via PAFE with the help of instance position. Be-
cause PAFE can highlight the motion of instances and suppress
noisy backgrounds, which is critical for compositional general-
ization. Compared with B1, our approach with PAFE + IFI (B2)
brings further significant 1.8% and 1.4% improvements on
top-1 and top-5, respectively, suggesting that identity informa-
tion is helpful for semantic interactions among instance-centric
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TABLE VII
FEW-SHOT COMPOSITIONAL ACTION RECOGNITION ACCURACY (%) ON THE SOMETHING-ELSE DATASET. ‘“# FR” DENOTES THE NUMBER OF FRAMES USED IN
MODELS. “BASE,” “5-S,” AND “10-S”” DENOTE THE BASE SET, 5-SHOT SET AND 10-SHOT SET, RESPECTIVELY. “ENSEMBLE” INDICATES THAT THE MODEL IS
COMBINED WITH I3D IN AN ENSEMBLE WAY. ONLY TOP-1 ACCURACY OF MODELS IS REPORTED HERE DUE TO THE LIMIT SPACE

few shot

Method #fr | base 5.5 10-S
13D [5], [6] 66.0 | 18.2 20.1
NL* [16] 76.6 | 25.3 30.9
STRG* [6] 8 779 | 26.6 324
STIN* [11] 76.4 | 24.6 294
Ours 79.5 | 30.7  36.2
STIN [11] 16 80.6 | 28.1 33.6
Ours 82.5 | 33.2 39.4
Ensemble

13D, STIN [11] 16 81.1 | 34.0 40.6
13D, Ours 84.1 | 35.3 41.7

(a) with Ground-truths

TABLE VIII
COMPOSITIONAL ACTION RECOGNITION ACCURACY (%) ON THE
TKEA-ASSEMBLY DATASET [15]. MACRO IS SHORT FOR MACRO-RECALL THAT
AVERAGES THE RECALL OF EACH CLASS; MICRO IS SHORT FOR
MICRO-ACCURACY COMPUTES THE ACCURACY GLOBALLY WITHOUT
DISTINGUISHING BETWEEN DIFFERENT CLASSES.“OURS” DENOTES “PAFE +

IFI + SPP”

Mixed Compositional
Method Macro Micro ‘ Macro Micro
13D [5], [6], [15] 51.6 76.0 30.0 44.0
STIN [11] 51.4 73.4 36.3 51.5
PAFE + STIN [11] 57.2 82.1 33.1 51.2
PAFE + IFI 59.6 81.8 35.8 54.3
PAFE + IFI + SPP 62.0 84.6 39.0 56.8
MGAF [59] 49.1 72.4 37.6 55.6
Ours 62.0 84.6 39.0 56.8

features. After that, our approach with PAFE + IFI + SPP (Ours)
improves top-1 and top-5 again by 2.1% and 1.2% again by
introducing auxiliary position prediction to facilitate the fusion
of information from different sources.

With detections, each component shows similar improve-
ments, although all variants drop sharply due to the instance-
centric features from inexact tracklets. In particular, the im-
provement brought by SPP is indeed less obvious. To avoid the
effect of randomness, we run our final model five times and
report the averaged results, 47.5% and 74.4%. It also motivates
future works to overcome the inaccuracy of extra modal infor-
mation (used for enhancing the compositional generalization).

2) Comparisons With the State-of-The-Art Method: We com-
pare our approach with recent works [11], [59] on compositional
action recognition with ground-truth and detected boxes, and
the results are reported in Table VI. Overall, our approach
establishes a new state-of-the-art methods in terms of ground
truth and detection.

Ground Truth. We first compare our approach with recent
state-of-the-art methods using ground-truth boxes based on

few shot

Method #fr | base 5.5 10-S
13D [5], [6] 66.0 | 18.2 20.1
NL* [16] 69.4 | 18.3 224
STRG* [6] 8 71.0 | 20.2 25.3
STIN* [11] 69.3 | 18.8 23.7
Ours 72.2 | 20.7 27.2
STIN [11] 76.8 | 23.7  27.0
STRG [11] 16 | 75.4 | 24.8 29.9
Ours 75.4 | 26.0 31.7
Ensemble

13D, STIN [11] 76.1 | 27.3  32.6
STRG, STIN [11] | 16 | 78.1 | 29.1 34.6
13D, Ours 79.8 | 31.6 37.5

(b) with Detections

different frames and training methods, as reported in Table VI a.
With an end-to-end training fashion, our approach (Ours) easily
outperforms the base method 13D [5], [6] and the most related
STIN [11], based on whether 8 or 16 frames. In an ensemble way,
13D, Ours. still gains 6.0% and 4.4% compared with the baseline
method STIN [11] and exceeds the existing best results from [59]
with a more powerful video backbone, i.e., TSM [21]. Limited
by the available computing resource, we do not use SLOW-
FAST [22] to extract features from 32 frames similar to [59].

Moreover, CDN [49] is an ensemble method that fuses scores
from different pretrained models via two different strategies (i.e.,
naive sum and log-sigmoid sum [62]). Therefore, it is fairer to
compare CDN and our ensemble model, both of which apply the
late fusion of predicted scores. Whether using naive sum or log-
sigmoid sum, our ensemble model easily exceeds CDN. Beyond
that, our end-to-end model can also significantly outperform
CDN [49] (Naive Sum).

Detection. Using inaccurate detections, our approach still
achieves state-of-the-art results with both end-to-end training
and ensemble fashion. Similarly, Ours significantly outperforms
13D and STIN with whether 8 or 16 frames. Moreover, Ours with
16 frames is superior to the state-of-the-art method STRG [6] by
0.8% in terms of top-1 accuracy. We combine our approach with
13D in an ensemble way, and it becomes the new state-of-the-art
result of this benchmark without ground truth.

3) Few-Shot Setting: To evaluate the generalization capabil-
ity of our approach, we conduct experiments on the few-shot
setting proposed in [11].

Problem Formulation. In the above setting, the authors [11]
randomly divide the original 174 classes into the base set with
88 categories and the novel set with 86 categories for few-shot
compositional action recognition. Models are pretrained on
all training samples (total 112,397 videos) from the base set
and then finetuned on few-shot samples from the novel set to
recognize the rest of the samples. Following [11], we directly
fine-tune models on all categories from the novel set instead
of the traditional “n-way, k-shot” in few-shot learning [63].
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Tipping sth. with sth. in it over, so sth. in it falls out
Pouring sth. out of sth.
Spinning sth. so it continues spinning
Pretending to turn sth. upside down
Sprinkling sth. onto sth.
Pulling sth. onto sth.
Pretending to take sth. out of sth.
Putting sth., sth. and sth. on the table
Showing sth. next to sth.
Showing a photo of sth. to the camera -11.5
-20
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P 278
D 264
I 264

-2.5
-2.6
-2.9
-3.2 W Ours
13D + STIN
-10 0 10 20 30 40

Difference on Top-1 Accuracy (%)

I3D: Showing that sth. is inside sth.
I3D + STIN: Showing that sth. is inside sth.
Ours: Tipping sth. with sth. in it over, so sth. in it falls out

(b)
I3D: Rolling sth. on a flat surface

I3D + STIN: Spinning sth. that quickly stops spinning
Ours: Spinning sth. so it continues spinning

(d)

Fig. 5.

I3D: Turning sth. upside down
I3D + STIN: Turning sth. upside down

Ours: Pretending to turn sth. upside down

eletel

I3D: Holding sth.
I3D + STIN: Showing a photo of sth. to the camera
Ours: Showing sth. to the camera

(e)

(a): Top-5 categories that our approach exceeds (blue bar) or lags behind (orange bar) I3D + STIN [11]. The numbers represent the difference between the

two models in terms of top-1 accuracy. (b-e): Predictions of I3D [5], [6], I3D + STIN [11], and our approach on some examples from the Something-Else dataset.
All instances are annotated by cyan boxes, and the correct and incorrect predictions are highlighted in green and red, respectively. Best viewed in color.

For example, 86 x 10 training examples are used for 10-shot
fine-tuning. All the models are trained in 50 epochs with a fixed
learning rate of 0.01. We froze the parameters of all layers in
the network except the last classifier at the stage of fine-tuning.
More details can be found in [11]. In this work, only 5-shot and
10-shot results are reported in Table VII.

Results. As shown in Table VII a, we first report the results
based on ground-truth bounding boxes. With only 8 frames,
our approach (Ours) is clearly superior to previous reason-
ing methods (NL*, STRG*, and STIN*) that plugged in our
instance-based framework and the frame-based method I3D.
Using 16 frames, Ours outperforms STIN [11] by 5.1% and
5.8%, demonstrating the advantage of the proposed progressive
fusion compared with the simple concatenation used in [11].
Finally, our approach can be combined with any existing frame-
level video backbone, such as I3D, in an ensemble way and then
achieve the best results.

Surprisingly, our approach works well even with detected
boxes, suggesting that our model does not rely on strong position
supervisions, as reported in Table VII b. In particular, Ours
achieves 2.5% and 7.1% gains on 5-shot and 10-shot settings,
respectively, compared with I3D with 8 frames. With 16 frames,
our approach still shows a clear advantage, and “I3D, Ours.”
outperforms the existing state-of-the-art results from [6] by a
remarkable margin. Overall, our approach maintains a strong
generalization on the few-shot setting against other methods.

C. Results on IKEA-Assembly

The original IKEA-Assembly randomly splits video samples
from 33 actions into train/test sets that are joined in the term
of verb-noun combination, lacking the ability to evaluate the
compositional generalization of methods. For instance, £1ip
table will appear in both the training and testing phases. To
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this end, [59] introduces the compositional task on this dataset
by forcing the same verb into combining with different objects
between train and test splits. Thus, it becomes a classifica-
tion on 6 compositional actions, i.e., align sth., attach
sth., flip sth., lay down sth., pick up sth.,
and push sth.. More details are described in the supple-
mentary material of [59]. Notably, we use the tracklets released
by [15] rather than the ground truth and train all models with 16
frames. The results on both original and compositional settings
are reported in Table VIII to demonstrate the effectiveness of
the proposed methods.

With the novel compositional setting, STIN [11] shows poor
results here due to the rough fusion of appearance and motion on
this benchmark, compared with I3D. “PAFE + STIN” surpasses
the base method I3D on the metrics of Macro and Micro by
extracting instance-centric representations from RGB and po-
sition input. As expected, “PAFE + IFI” builds identity-aware
semantic interactions among these representations that further
boosts our model (“PAPE+STIN™). “PAFE + IFI + SPP” brings
significant improvements on this benchmark thanks to the rela-
tively complete and clear motion trajectory of instances (in the
third view). Overall, our approach significantly outperforms the
state-of-the-art method MGAF [59] on the compositional IKEA-
Assembly and shows strong generalization on this benchmark
again by aggregating multiple cues progressively.

Moreover, each component of our proposed approach shows
similar improvement on the original (“Mixed”) split of this
dataset. We find that it is easy for the above models to overfit the
mixed split with only 8 frames. Therefore, we conduct all our
experiments with 16 frames except MGAF. MGAF, including
slow (8 frames) and fast (32 frames) paths, shows poor results
due to the poor representations from the slow path. In addition,
when we train STIN [11], the additional non-local module is
dropped to prevent overfitting.

D. Diagnostic Studies

In this section, we show some results to diagnose our model.

1) CategoryAnalysis: There are atotal of 174 actions defined
in Something-Else, and different models excel in different cate-
gories. Overall, our approach surpasses STIN [11] on 84.5%
categories and the top categories are shown in Fig. 5(a). In
particular, our approach is far superior [11] on some categories,
such as “pouring sth. out of sth.,” “spinning sth. so it continues
spinning,” etc., which involve not only relative motions but
also object properties. Understandably, our method is worse
than STIN [11] on “showing a photo of sth. to the camera” (in
Fig. 5(e)) in which there is only a static photo in the video. Our
model tends to capture significant dynamic cues of objects that
will not appear in this “static” action.

2) Visualization: We also visualize some predictions on
Something-Else in Fig. 5. We can see that STIN [11] easily
learns the bad appearance or position bias due to the rough
concatenation of different features. For instance, in Fig. 5 (b),
STIN [11] prefers to capture the concept of “sth. is inside sth.”
when seeing a container containing certain objects similar to
the I3D model but ignores the negligible yet very important
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position self-change of objects. In addition, STIN [11] ignores
the concept of “pretend” in Fig. 5 (c¢) due to the worse bias from
position features. However, our approach generates predictions
by fusing different levels of features progressively, rather than
preferring one of them.

V. CONCLUSION

Integrating multiple information that often differ significantly
in modality and dimensionality, is the promising solution to
compositional action recognition. Previous methods encode in-
stance information into non-appearance feature independently
and fuse it with appearance feature for classification, which
ignores the importance of instance information in the process
of video feature learning. To this end, we propose a novel
framework to inject instance information into the video feature
learning progressively. Our framework is composed of three
steps, namely, position-aware appearance feature extraction,
identity-aware feature interaction, and semantic-aware posi-
tion prediction. Experimental results on two action recognition
datasets show the robust generalization ability of our framework
on compositional action recognition. This work demonstrates
that the understanding of human action is actually a process
of gradually fusing features from multiple sources with diverse
strategies. We hope that this work can inspire future research on
the compositional generalization of activity understanding.
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