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ABSTRACT
Group activity recognition, a challenging task that a number of
individuals occur in the scene of activity while only a small subset
of them participate in, has received increasing attentions. However,
most of the previous methods model all the individuals’ actions
equivalently while ignoring a fact that not all of them are con-
tributed to the discrimination of group activity. That is to say, only
a small number of key actors (participants) play important roles in
the whole group activity. Inspired by this, we explore a new “One to
Key” idea to progressively aggregate temporal dynamics of key ac-
tors with different participation degrees over time from each person.
Here, we focus on two types of key actors in the whole activity, who
steadily move in the whole process (long moving time) or intensely
move (but closely related to the group activity) at a significant mo-
ment. Based on this, we propose a novel Participation-Contributed
Temporal Dynamic Model (PC-TDM) to recognize group activity,
which mainly consists of a “One” network and a “One to Key” net-
work. Specifically, “One” network aims at modeling the individual
dynamic of each person. “One to Key” network feeds the outputs
from the “One” network into a Bidirectional LSTM (Bi-LSTM) ac-
cording to the order of individual’s moving time. Subsequently,
each output state of Bi-LSTM weighted by a trainable time-varying
attention factor is aggregated by going through LSTM one-by-one.
Experimental results on two benchmarks demonstrate that the pro-
posed method improves group activity recognition performance
compared to the state-of-the-arts.
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1 INTRODUCTION
Activity recognition which aims to enable computer to understand
the actions appeared in a video clip has received a great deal of
research attention in computer vision and multimedia communi-
ties [12, 14, 29, 38, 41]. According to the number of participants,
human activities can be mainly divided into three categories: single-
person action [12, 33], human interaction [32, 39] and group activity
[17, 30]. Previous works [12, 33, 38] paid more attention to single-
person action recognition, and have made good progress. Besides
of single-person action, a real scenario may contains more human
interactions (e.g.,“handshaking” ) and multi-person activity (e.g.,
“Queueing”, “Playing together”). In a scene of human interaction,
there are at least two persons who are concurrently interacting with
each other. In a scene of group activity, the activity depicts a more
complex scene/event involving single-person action and various
other interactions (e.g. group-person and group-group interaction).
Generally, compared with single-person action recognition and hu-
man interaction recognition, group activity recognition is a more
challenging task [17, 39].

Generally, existing solutions for group activity recognition can
be summarized as two key steps: 1) understanding individual action
from the motion descriptor of each person; and 2) inferring the
class label of the group activity from a collection of individual mo-
tions. In the first step, some works [17, 30, 39] are proposed to learn
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“Left set”

Figure 1: Illustration of key participants in a “Left set” ac-
tivity of volleyball match. Two curves are plotted to reflect
Person A and Person B’s motion intensity and moving time,
respectively. Person A keeps moving during the whole pro-
cess of this video clip, while person B hits the ball (related
to “left set” activity) with a intensive motion at a moment.
These two types of motions are called longmotion and flash
motion respectively. Obviously, the participants with these
two types of temporal motions are more related to the “left
set” activity of volleyball match. Thus such participants are
called key actors in this activity.

hierarchical feature representation with Convolutional Neural Net-
works (CNN) for better understanding individual’s action, which
has achieved better performance than the hand-crafted feature
based methods [1, 7, 23]. In the second step, some recent methods
attempt to encode the high order relationship among persons in the
scene by graphical structures [2, 10] or Recurrent Neural Networks
(RNN) [39]. However, most of these works ignore such inherent
characteristic of group activity that not all individuals’ actions are
contributed to group activity equivalently.

In a group activity, Deng et al. [10] validated that some individ-
uals are irrelevant to the whole group activity [24], who can be
outliers compared to the group activity. That is to say, only a small
number of key actors (participants) play important roles in the
whole group activity. Therefore, it is essential to discover these key
actors for recognizing the group activity effectively. The fundamen-
tal problem becomes:Who are the key actors? We investigate that
key actors should have steady motions during the whole process
or remarkable motions at a moment. To better explain this, we give
an example of key actors’ motion in volleyball match, as shown
in Figure 1. In the “left set” scene of volleyball match, person A
moves across the court and participates in the activity of “left set”
during the whole video, which is called long motion. And, person
B only has a sudden motion (hit the ball) at a significant moment.
Although this sudden motion is short, it is closely related to the “left
set” activity. In this paper, this type of motion is called flash motion.
Both types of key actors can provide crucial clues to understand
the activity “left set”.

To model the important dynamics of key actors while avoiding
the irrelevant dynamics of outlier persons, we propose a novel
Participation-Contributed Temporal Dynamic Model (PC-TDM)
for group activity recognition. The framework of PC-TDM on a
volleyball match is shown in Figure 2. First, we extract spatial fea-
tures of each person on the detected and tracked bounding boxes
by employing a pre-trained CNNmodel. Second, we take the spatial
features of each person as the input of a special “One” Network, to
model individual dynamics of each person over time. Third, the out-
put states of “One” Network are fed into the proposed “One toKey”
Network (OKN) for aggregating to the discriminative motion in-
formation of group activity scene, by attending to the key actors
while avoiding the irrelevant outlier persons. More specifically,
the Interaction Bi-LSTM models the individuals’ interactions in
accordance with the order of individual’s long motions through-
out the whole activity process. Then the Aggregation LSTM aims
to aggregate latent output states of Interaction Bi-LSTM with the
trainable attention weights progressively. Here, an attention weight
describes the intensity of an individual’s flashmotion, which is vary-
ing with time. Finally, the concatenated states at each time step
input to a softmax layer, and the averaged softmax score on all time
steps is the prediction probability vector of group activity class.

Overall, the contributions of this work can be summarized as
follows:
• To recognize group activity with a subset of participants,
we propose a novel Participation-Contributed Temporal Dy-
namic Model to hierarchically learn discriminative feature
descriptors from each person to key participants. And then
we conduct experiments to illustrate the superiority of the
proposed method by comparing with the state-of-the-art
methods.
• As the first time to consider the participation degrees of all
persons for group activity recognition, the proposed “One to
Key” Network can progressively aggregate the dynamics of
key participants with different long motions or flash motions
one-by-one, while automatically avoiding the irrelevant mo-
tions of outlier persons. This can be flexibly embedded into
the other network architectures.

In experiments, we evaluate the performance of the proposed
PC-TDM on two widely-used datasets (e.g., Volleyball Dataset and
Collective Activity Dataset) by comparing with the state-of-the-art
methods and several baselines.

2 RELATEDWORKS
For the past few years, group activity recognition [3, 11, 16, 22, 40]
has developed into an attractive topic in computer vision and mul-
timedia areas. In the early stages, many works employ hand-craft
feature to represent individuals’ motions in space and/or time
domain[7, 8, 24, 27]. In particular, Choi et al. [7] designed a lo-
cal spatio-temporal descriptor to capture the spatial distribution
of pedestrians effectively over time, and then release a collective
activity dataset. Compared with traditional machine learning meth-
ods [7, 24, 31], Deep Neural Networks (DNNs) have shown excellent
performance in a variety of computer vision tasks [18, 26, 36, 37].
Thus many DNN-based methods for group activity recognition
have sprung up. Ibrahim et al. [17] proposed a hierarchical model
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Figure 2: Framework of the proposed PC-TDM for recognizing group activity on a volleyball match. First, we extract their
spatial CNN features of each individual at each time step. Second, we feed these spatial CNN features into Single-Person LSTM
for capturing the individual dynamics. Third, the “One to Key” Network consisting of two layers of LSTM (i.e., Interaction Bi-
LSTM and Aggregation LSTM) is designed to aggregate spatio-temporal features with attending to key actors. Specifically,
we feed the individual dynamics of each person into the Interaction Bi-LSTM in accordance with the order of individuals
moving time throughout the whole activity process. Then we integrate all hidden states from Interaction Bi-LSTM with the
time-varying attention weights by an Aggregation LSTM, and concatenate the aggregated states of two sides as an input of
a softmax layer at each time step. Finally, we average softmax scores from each time step as the final prediction probability
vector for the group activity recognition.

with serval LSTM layers to recognize group activity ranging from
low-level to high-level dynamics. Similarly, Wang et al. [39] ex-
tended a RNN-based hierarchical framework to handle three level
interactions (single human dynamics, within group human inter-
action and group to group interaction) with a high order context
modeling scheme.

Recently, some works [30, 32] argued that the individual actions
are related to each other, and proposed to model the interaction-
related dynamics over time. For example, Shu et al. [30] proposed a
Confidence-Energy Recurrent Network to integrate the confidences
from two types of predictions (individual action prediction and
human interaction prediction) to energy layer in inferring the class
label of event. Shu et al. [32] designed a Concurrence-Aware Long
Short-Term Sub-Memories to explore the long-term inter-related
dynamics among interacting individuals, rather than the individual
dynamics of each person.

In addition to the temporal sequence, the complex spatial struc-
ture among persons also existing in a group activity. Deng et al. [10]

proposed a Structure Inference Machine with RNN to iteratively
update the graphic model, and to reason about which people in
a scene are interacting and infer the label of group activity. Fur-
thermore, Jain et al. [2] extended the traditional spatio-temporal
structure data into a Spatio-Temporal Graph model within the units
of RNN to effectively infer the action/relation between humans and
objects.

However, most of these works did not realize that only a small
number of persons’ actions are closely related to the whole group
activity. Although Yan et al. [42] predicted human interaction via
relative interacting region, and Ramanathan et al. [28] proposed to
detect the event by attending to the key persons responsible for the
event in a multi-person video clip. Contrast to [28, 42], this work
aims to capture the key participants with at least one of the key
characteristics (i.e., long motion and flash motion) for group activity
recognition. Unlike [28], we employ optical flow to measure the
intensity of individual’s long motion, and learn a attention factor
to describe the intensity of individual’s flash motion over time.
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3 THE PROPOSED METHOD

3.1 Preliminary
In a video clip with T frames, it describes a specific group activity
including K persons. Let Zt denotes the representation of the t-th
frame, and Xk

t denotes the representation of the k-th person in
the t-th frame, where t ∈ {1, 2, · · · ,T }, and k ∈ {1, 2, · · · ,K}. We
observe the actions of all the people from time step 1 to T , and
recognize what a group of people are doing in this short video,
which is called group activity recognition in this paper.

Actually, a group activity contains multiple individuals who are
doing various actions, but not all of them are engaged in the activity.
That is to say, in the group activity recognition task, the class (e.g.,
“Moving”, “Talk”) of group activity is related to a smaller subset of
individuals, i.e., key actors. Inspired by this, we consider to infer the
class label of group activity bymainly capturing the effectivemotion
information of these key actors from all person in the activity scene.
Intuitively, the key actors should have the following characteristics:
steadily moving in the whole activity process or intensively moving
at a moment, as shown in Figure 1. In this paper, they are called
long motion and flash motion respectively, which are defined as
follows,

• Long motion is performed by an actor who steadily moves
throughout the whole activity process, such as “moving on
the court”. Thus, in the whole activity process, the person
who has the longest moving time should have the longest
motion. To measure the time of long motion of individual,
we adopt to calculate the mean value of the optical flow
corresponding to such person between all two consecutive
frames.
• Flashmotion is performed by an actorwho intenselymoves
at a significant moment, such as “spiking the ball”, which
is closely related to the group activity. Obviously, the flash
motion provides the crucial clue to represent the semantic
of the group activity in a video clip. Since flash motion often
happens at a significant moment in a video clip, we consider
to adopt the attention strategy to force it over time.

To model the important dynamics of key actors with long motion
or flash motion well, a novel Participation-Contributed Tempo-
ral Dynamic Model (PC-TDM) is proposed in this work. The pro-
posed PC-TDM contains two modules, i.e., “One” Network, and
“One to Key” Network (OKN), as shown in Figure 2. In “One” Net-
work, Single-Person LSTM models the individual dynamics from
the spatial CNN features of each person. In “One to Key” Network
(OKN), its goal is to aggregate the personal spatio-temporal fea-
tures with attending to the key actors, while avoiding the outlier
persons. Specifically, Interaction Bi-LSTM models interaction dy-
namics among individuals in accordance with the order of their long
motions throughout the whole activity process. And Aggregation
LSTM progressively aggregates the latent states from Interaction Bi-
LSTM with trainable time-varying attention weights. These details
are described in the following sections.

3.2 “One” Network: Single Person Temporal
Network

Generally, a group activity includes a number of persons, and most
of them participate in this group activity. As we know, it is easy
to distinguish between “Moving” and “Waiting”, depending on the
individual actions of most of person. Hence, it is primary to learn
individual temporal representation of each person for recognizing
the group activity. There, similar to [17, 32, 39], we build a “One”
Network to model individual dynamics of each person well. Specif-
ically, we extract CNN features from each person’s tracklet at each
time step as the static representations of individuals. And then we
leverage a long short-term memory (LSTM) (called Single-Person
LSTM in this paper) to model the individual dynamics from the
static representations of individuals.

Formally, we denote the sequence of CNN features of one indi-
vidual by X = {x1,x2, ...,xT }, where xt is the spatial CNN features
at time step t extracted from a pre-trained CNN model. The input
gate it , forget gate ft , output gate ot , and input modulation gate дt
, memory cell ct of Single-Person LSTM are defined as follows,

it = σ (Wixxt +Wihht−1 + bi ); (1)
ft = σ (Wf xxt +Wf hht−1 + bf ); (2)
ot = σ (Woxxt +Wohht−1 + bo ); (3)
дt = σ (Wдxxt +Wдhht−1 + bд); (4)
ct = ft ⊙ ct−1 + it ⊙ дt ; (5)
ht = ot ⊙ φ(ct ), (6)

where σ (∗) is a sigmoid function; W∗x and W∗h are the weight
matrices; b∗ is the bias vector; ⊙ denotes the element-wise product;
as well as ht is the hidden state which contains the dynamics of
that person at time step t .

3.3 “One to Key” Network: Key Participant
Temporal Network

Since “One” Network modeling the individual dynamics of each
person equivalently and independently, it ignores two facts that
1) the actions of some outlier persons in the activity scene are
irrelevant to this group activity; and 2) the actions of some persons
are related to each other.

To this end, we propose an “One to Key” Network (OKN) fol-
lowing “One” Network to sequentially model the dynamics of key
participants with long motions and flash motions from the in-
dividual dynamics of each person. Specifically, we firstly employ
Bi-LSTM to model the individuals’ interactions in accordance with
the order of individual’s long motions throughout the whole activ-
ity process, and then design a Aggregation LSTM to progressively
aggregate latent output states of Bi-LSTM with trainable attention
weights. Details are given as follows.

3.3.1 Modeling for Long Motion. Long motion is often per-
formed by a participant who has continuous motion throughout
the whole activity process. The longer the moving time of one
person has, the more important role she/he plays. To measure the
moving time of long motion in the entire video clip, we attempt at
measuring mean motion intensity for each person by stacking the
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T

MI

(a) “Moving” in Volleyball Dataset (b) “Crossing” in CAD

MI

T

Figure 3: Examples ofMotion Intensity (MI). Given the track-
lets of a person on all frames, we calculate their optical flows
between each two consecutive frames, then drawher/hismo-
tion intensity over time.

optical flow [5, 12, 33] images and calculating the mean value of
them, as illustrated in Figure 3.

Mathematically, given a video clip ofT frames and the resolution
of each frame isw∗h, we denote the horizontal and vertical displace-
ment vectors at point (u,v) (u = 1, 2, ...,w , and v = 1, 2, ...,h) in
frame t by dxt (u,v) and d

y
t (u,v), respectively. Firstly, we stack flow

vectors dxt (u,v) and d
y
t (u,v) of T consecutive frames as follow:

SFk (u,v, 2i − 1) = dxt (u,v); (7)

SFk (u,v, 2i) = dyt (u,v), (8)

where i = 1, 2, · · · ,T . Then we obtain SFk (u,v, c) (c = 1, · · · , 2T )
that encodes the motion of k-th person at point point (u,v) over a
sequence of T frames, and define the intensity of long motion w.r.t.
k-th person as:

MIkt =

∑w
u=0

∑h
v=0

∑2t
c=2t−1 |SFk (u,v, c)|

w ∗ h
; (9)

MIk = (
T∑
t=1

MI tk )/T , (10)

whereMI tk is the motion intensity of k-th person at time step t , and
MIk is the motion intensity of k-th person throughout the whole
process. Obviously, ifMIk of one person is large, it is indicated that
this person participates in the activity frequently over time.

To model interaction-related dynamics among persons via RNN,
some works [17, 39] ordered an interaction sequence of person
by roughly using spatial positions of all persons. This ignores a
fact that some closer persons are not related sometimes. Obviously,
one person who keeps moving (e.g., “Moving”, “Jumping”) has a
large amount of time to interact with other persons over many
time steps. Therefore, the moving person with long moving time
should be early modeled by LSTM. Formally, we rank individual
features of each person via the values of MIk in descending or-
der, which is taken as an interaction sequence for inputting to
LSTM. Considering that the interaction between two persons is
bi-directional, we utilize a new Interaction Bi-LSTM rather than the
traditional LSTM to model such interaction sequence. At time step
t , the Interaction Bi-LSTM unit computes the forward hidden
sequence {

−→
h 1
t ,
−→
h 2
t , · · · ,

−→
h k
t , · · · ,

−→
h K
t } and the backward hidden

sequence {
←−
h 1
t ,
←−
h 2
t , · · · ,

←−
h k
t , · · · ,

←−
h K
t } by iterating K persons from

k = K → 1 and k = 1→ K respectively. Then the output sequence
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Figure 4: Different intensive flashmotions of participants in
a moment. The value of attention factor describes the inten-
sive degree of flash motion.

{h̃kt , h̃
2
t , · · · , h̃

k
t , · · · , h̃

K
t } can be computed as follows,

−→
h
k
t = H(Wx

−→
h
x̃kt +W−→h

−→
h

−→
h k−1
t + b−→

h
); (11)

←−
h
k
t = H(Wx

←−
h
x̃kt +W←−h

←−
h

←−
h k+1
t + b←−

h
); (12)

h̃kt =
−→
h k
t �
←−
h k
t ,k = 1, 2, · · · ,K , (13)

whereH is implemented by Eq. (1)-(6), and � denotes the pooling
operation. Contrast to concatenating the forward and backward hid-
den sequence in typical Bi-LSTM, we construct the final sequence

representation h̃ by pooling
←−
h
k
t and

−→
h
k
t . This not only eliminates

the redundant information, but also reduces the computational
overhead of model.

3.3.2 Modeling for Flash Motion. Besides on long motion,
some persons are not steadily moving in the whole activity, while
they have intensive motions in a significant moment, namely flash
motion. These motions also provide important discriminative infor-
mation for recognizing groups activity by RNN model. Taking the
“left set” activity in volleyball match as an example, as shown in
Figure 4(a), several persons (in yellow bounding boxes) around the
volleyball participate in activity with more intensive flash motion
at a moment. Their motions are closely related to “left set” activity
provide the crucial information to understand this activity.

Since the flash motion is varying over time, we consider to assign
different attention factors to force the intensity of flash motion of
key participants over time. One straight way is that we can compute
the attention factor of one person at one time step based on the
value of the optical flow between two consecutive frames. However,
some flash motions happening at a significant moment may be not
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related to group activity, such as “one person suddenly tumbles
in a set activity of volley match”, “two persons are colliding in a
walking activity”, etc.

In this work, we build a Aggregation LSTM to learn the atten-
tion factor for each person via her/his prediction probability of
person-level action, and then progressively aggregates latent out-
put states of Interaction Bi-LSTM. Here, if the person-level action
one person is more consistent with the group-level activity, the
corresponding learned attention factor will be larger, vice versa.
To improve the model capabilities, we adopt the strategy used in
[17] to aggregate the individuals’ information into one represen-
tation. For the volleyball dataset, the two branches correspond to
two teams of players respectively. The features from two branches
are concatenated to form one representation to avoid the confusion
of “left” and “right”. Specifically, we split the whole group activ-
ity within K persons into Nд sub-groups for recognition, where
д = 1, 2, · · · ,Nд . The start-index Sд and end-index Eд of persons
in the д-th sub-group can be re-expressed as follows,

Sд = (д − 1) ∗ K/Nд + 1; (14)
Eд = д ∗ K/Nд . (15)

In д-th sub-group of a video clip, for the k-th person, we capture
the intensity of her/his flash motion by learning an attention factor
γkt to control her/his state h̃kt from Interaction Bi-LSTM at time
step t :

X̂tд = [γ
Sд
t h̃

Sд
t ;γ Sд+1t h̃

Sд+1
t ; · · · ;γ Eдt h̃

Eд
t ]; (16)

γkt =
exp(ekt )∑Eд−Sд+1

i=1 exp(eit )
, (17)

where ekt = Relu(Whe h̃
k
t + be ), k ∈ {Sд , Sд + 1, ...,Eд};Whe is the

weight matrix, be is the bias vector, and exp(∗) is the exponential
function. Then we achieve the latent representation X̂tд for each
person in д-th group at time step t . So far, an Aggregation LSTM
unit at time step t can be simply expressed as follows,

ĥktд = Aggregation_LSTM(ĥk−1tд , X̂
k
tд); (18)

Ztд = ĥ
Eд
tд , (19)

where Ztд is the representation of д-th sub-group at time step
t . Next, we get the activity representation by concatenating the
features from all Nд sub-groups:

Zt = Zt1 ⊕ Zt2 · · · ⊕ ZtNд . (20)

Finally, we feed the concatenatedZt at each time step into a softmax
layer, and average them over frames as the final prediction vector
of group activity class.

4 EXPERIMENTS
In experiments, we evaluate the performance of proposed PC-TDM
on two benchmarks by comparing with the state-of-the-art methods
and several baselines.

4.1 Datasets
Two benchmarks used in experiments are introduced as follows,

• Volleyball Dataset [17]. It is a new sport dataset collected
from publicly available YouTube volleyball videos, consists
of 55 videos with 4830 annotated frames. For one frame, the
location of each player is given and labeled with one of the
action classes (e.g. “Waiting”, “Setting”, “Digging”, “Failing”,
“Spiking”, “Blocking”, “Jumping”, “Moving” and “Standing”),
and one of the group activity classes (e.g. “Left pass”, “Right
pass”, “Left set”, “Right set”, “Left spike”, “Right spike”, “Left
winpoint” and “Right winpoint”) is labeled to this frame.
For comparison with state-of-the-art methods and baselines
B1-B4, we use the following performance metrics: 1) multi-
class classification accuracy (MCA), and 2) mean per-class
accuracy(MPCA). Our split of training and testing sets is the
same as in [17].
• CollectiveActivityDataset (CAD) [7]. It contains 44 video
clips collected by a low resolution hand-held camera. Each
person labeled from five action labels (i.e., “Crossing”, “Wait-
ing”, “Queuing”, “Walking” and “Talking”) and eight pose
labels (not used in our work). A scene is assigned with the
label of group activity based on what the majority of people
are doing in the scene. We follow the train/test split provided
by [13], and use the tracklet data provided in [6]. Following
the experimental setting in [39], we merge class “Walking”
and “Crossing” as “Moving” and report the Mean Per Class
Accuracy (MPCA) due to the imbalanced test set.

4.2 Baselines
In experiments, four baselines are set as follows,

B1 Single Person Classification: In this baseline, we deploy
the pre-trained AlexNet CNN to extract fc7 features on
bounding boxes corresponding to each person, and max-
pooled them to a single representation at each time step.
Finally, we use these pooled features of individuals to train a
softmax classifier. This baseline is designed to illustrate the
importance of deep features.

B2 PC-TDM without OKN: This baseline is a variant of the
proposed model which omitting OKN, and recognizes activ-
ity depend on max-pooling over all personal spatio-temporal
features for each frame directly. This baseline aims to illus-
trate the importance of temporal dynamic.

B3 PC-TDM without Long Motion: This baseline is a de-
graded version of the proposed model that orders the per-
sonal features by roughly using spatial positions of all per-
sons (i.e., from left to right in a frame). This baseline can
illustrate the effectiveness of long motion.

B4 PC-TDM without Flash Motion: This baseline is a de-
graded version of the proposed model that discharges the
Aggregation LSTM. The hidden states output from Interac-
tion Bi-LSTM are max-pooled into a single representation
at each time step, and input to the softmax classifier. This
baseline can illustrate the effectiveness of flash motion.

4.3 Implementation Details
The input to our model are a set of bounding boxes (tracklets)
around each person tracked overT frames by the object tracker [9],
implemented in the Dlib library [19]. Our proposed framework is
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Table 1: Comparison of different methods on Volleyball Dataset. [4, 30] do not provide specific accuracy of per-class or the
mean per-class accuracy (MPCA). [25] ignores the classes of “Left winpoint” and “Right winpoint”.

Methods L_pass R_pass L_set R_set L_spike R_spike L_winpoint R_winpoint MCA MPCA
Ibrahim et al. [17] 77.9 81.4 84.5 68.8 89.4 85.6 88.2 87.4 81.9 82.9
Shu et al. [30] - - - - - - - - 83.3 83.6
Li et al. [25]∗ 55.8 69.1 67.3 52.1 82.1 79.2 - - 66.9 67.6

Biswas et al. [4] - - - - - - - - 83.5 -
B1 73.0 73.8 83.3 70.8 86.0 87.9 74.5 47.1 76.2 74.6
B2 81.9 77.1 85.7 74.0 88.3 88.4 79.4 47.1 79.7 77.7
B3 82.7 88.6 93.5 74.5 91.6 89.6 92.2 75.9 86.2 86.1
B4 89.8 83.3 94.1 80.2 86.6 92.5 83.3 73.6 86.3 85.4

PC-TDM 85.8 88.1 90.5 80.2 92.2 87.9 89.2 90.8 87.7 88.1

adaptive to various complex networks (e.g. VGG [34], ResNet [15]
and GoogLeNet [35]) for feature representation in individuals’ ac-
tions recognition stage. For fair comparison to [17, 39], we employ
the pre-trained AlexNet model [21] to extract CNN features on
bounding boxes corresponding to each person. Similar to [17], we
train the propose PC-TDM in a stage-wise manner. Specifically, we
firstly train “One” Network consisting of CNN and LSTM layer in
an end-to-end manner to recognize individuals’ actions. And then,
the concatenation of spatial CNN and temporal features output
from “One” Network are passed to the “One to Key” Network for
group activity recognition. All the codes of experiments are im-
plemented with Pytorch toolbox on a NVIDIA Tesla K20 GPU. We
use the Adam algorithm [20] with the learning rate of 0.001 for all
networks to minimize the cost function, and the learning rate is
decreased to 1/10 of the original value after every ten epochs.

In experiments on Volleyball Dataset, 10 time steps and 3000
hidden nodes are used for the Single-Person LSTM and a softmax
layer is deployed for the classification in the “One” Network. The
number of sub-group is set to Nд = 2. In “One to Key” Network
(OKN), Interaction Bi-LSTM has a six time steps (there are six
individuals in one sub-group) and 1000 nodes; and Aggregation
LSTM has six time steps and 1000 nodes.

In experiments on Collective Activity Dataset, 10 time steps
and 3000 hidden nodes are used for the Single-Person LSTM and a
softmax layer is deployed for the classification in the “One” Network.
The number of sub-group is set toNд = 1, namely we do not need to
divide group. In “One to Key” Network (OKN), Interaction Bi-LSTM
has a five time steps (there are six individuals in one sub-group) and
1000 nodes; and Aggregation LSTM has five time steps and 1000
nodes. Since the number of individuals in this dataset is varying
from 1 to 12. We select five effective persons for each frame and
regard them as an entire group. If the number of persons is less
than five, we take a full-zero matrix as the tracklets of new person.

4.4 Results on Volleyball Dataset
Comparison with baselines. Table 1 shows the recognition ac-
curacy of the proposed PC-TDM compared with the baselines. As
shown in this table, the proposed PC-TDM achieves the best MCA
and MPCA at the same time compared to all baseline methods. The
results of B1 and B2 illustrate the importance of deep features and
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Figure 5: Confusionmatrix of the proposed PC-TDM on Vol-
leyball Dataset.

temporal dynamics respectively. Compared to B3 and B4, our PC-
TDM considering the key participants with long motion or flash
motion obtains better performance.

Comparison with state-of-the-art methods. There are only
a little of literatures (e.g. Ibrahim et al. [17], Shu et al. [30], Li et
al. [25], Sovan et al. [4]) referring to Volleyball Dataset, thus we
compare our proposed PC-TDM with all of these state-of-the-art
methods for group activity recognition. The comparison results are
shown in Table 1. We can see that the proposed PC-TDM achieves
better performance than these methods. The PC-TDM improves
5.8% and 5.2% compared with the most related work [17] on MPA
and MPCA, respectively. And the PC-TDM improves 4.4% and 4.5%
compared with the existing state-of-the-art performance in [30]
on MPA and MPCA, respectively. The confusion matrix of PC-
TDM is also shown in Figure 5. Compared to the confusion matrices
reported in [17, 25], the proposed PC-TDMovercomes the confusion
between class “Setting” and “Passing” well. From this experiment,
we validate the effectiveness of key actors with long motion or flash
motion for recognizing group activity.
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Table 2: Comparison of different methods on Collective Activity Dataset. Similar to [39], the results of class “Walking” and
“Crossing” are merged as “Moving”.

Methods Moving Waiting Queuing Talking MPCA
Lan et al. [24] 92 69 76 99 84
Choi et al. [6] 90 82.9 95.4 94.9 90.8
Zhou et al. [43] 88.5 74.0 95.0 98.0 88.9

Ibrahim et al. [17] 95.9 66.4 96.8 99.5 89.7
Hajimirsadeghi et al. [13] 87 75 92 99 88.3

Wang et al. [39] 94.9 63.6 100 99.5 89.4
Li et al. [25] 90.8 81.4 99.2 84.6 89.0

B1 97.6 51.8 100 99.5 87.2
B2 99.5 48.2 100 99.5 86.8
B3 92.3 73.1 100 99.5 91.2
B4 88.0 79.4 100 99.5 91.7

PC-TDM 92.8 76.6 100 99.5 92.2

4.5 Results on Collective Activity Dataset
Comparison with baselines. Table 2 shows the recognition ac-
curacy of the proposed PC-TDM compared with the baselines. As
shown in this table, the proposed PC-TDM obtains the best per-
formance over all baselines on MCA and MPCA respectively, due
to the contributions of long motions and flash motions. Moreover,
B1 and B2 also validate the effectiveness of deep feature for group
activity recognition. The confusion matrix of the PC-TDM is shown
in Figure 6. It is noted that the “Waiting” is confused by the “Mov-
ing” seriously, since the action class “Waiting” always occurs with
class “Moving”.

Comparison with state-of-the-art methods. The compari-
son methods include Lan et al. [24], Choi et al. [6], Zhou et al. [43],
Ibrahim et al. [17], Hajimirsadeghi et al. [13], Wang et al. [39], Li et
al. [25]. The comparisons results are shown in Table 2. It is noted
that the results of these methods are calculated from the corre-
sponding original confusion matrix in [6, 13, 17, 24, 25, 39, 43]. We
can see that the proposed PC-TDM achieves the best performance,
and its MPCA improves 1.4% compared with existing state-of-the-
art performance in [6]. As new exploration by focusing on actions
of key participants, PC-TDM improves 2.5% compared with the
most related work [17] on MPCA. For “Moving”, the long and flash
motions are not very obvious, thus B2 without considering long
and flash motions achieves the highest accuracy. Since the provided
persons tracklets are not accurate, the method in [6] considering
tracking achieves the highest accuracy for “Waiting”. It is worth
noting that B2 gets the highest accuracy on “Moving”, but has the
worst performance on “Waiting”. To sum up, our model obtains sat-
isfactory results on all activities, especially “Queuing” and “Talking”.
Thus, the MPCA of our approach is higher than the others.

5 CONCLUSIONS
In this work, we proposed a novel Participation-Contributed Tem-
poral Dynamic Model (PC-TDM) for group activity recognition
with attending to key actors (participants). The proposed PC-TDM
mainly consists of an “One” Network and an “One to Key” Network.
First, we utilize “One” Network to model the individual dynamics
of each person from the CNN features. Second, a new “One to Key”
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Figure 6: Confusionmatrix of the proposed PC-TDM on Col-
lective Activity Dataset (CAD).

Network (OKN) is built to progressively aggregate the motion in-
formation of key actors with long motion or flash motion over time.
Specifically, OKN feeds the individual dynamics of each person
into an Interaction Bi-LSTM for modeling the interaction-related
dynamics according to the order of moving time of individual’s
long motion. Then an Aggregation LSTM is designed to aggregate
the latent output states from Interaction Bi-LSTM with trainable
time-varying attentionweights one-by-one. In experiments, the pro-
posed PC-TDM improves group activity recognition performance
on two benchmarks (i.e., Volleyball Dataset and Collective Activity
Dataset) compared with the state-of-the-art methods.
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