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Abstract—In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled
and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations
of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main
limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative
pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only
within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these
limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-
granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link
skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from
noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the
agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/
negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show
that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks.

Index Terms—Action recognition, skeleton, semi-supervised, contrastive learning, anchor graph

<+

1 INTRODUCTION [16], [17]. In addition, skeleton sequences can be regarded as a
type of lightweight, compact, and high-level representation
for human behaviors [18], [19]. Meanwhile, skeleton sequen-
ces can be easily obtained by depth sensors or pose estimation
algorithms [20], [21]. Thus, skeleton-based action recognition
has also attracted increasing attention in this community [13],
[18], [22], [23], [24], [25].

To learn the discriminative representations of skeletons,
some deep learning-based methods achieve remarkable per-
formance by designing various Convolutional Neural Net-
works (CNN) or Recurrent Neural Networks (RNN) [22],
[24], [26], [27]. Furthermore, considering the structural infor-
mation of skeletons and the interdependence between joints,
some researchers employ Graph Convolutional Networks
} o o _ (GCN) to learn the structural features of skeletons on a spa-
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HUMAN action recognition is an essential problem in com-
puter vision and pattern recognition fields, which is rap-
idly developing due to its wide applications in video
retrieval, video surveillance, virtual reality, human-computer
interaction, etc. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. Accord-
ing to diverse types of input data, human action recognition
tasks can usually be divided into RGB-based [2], [4], depth-
based [11], [12], and skeleton-based action recognition
tasks [13], [14]. Compared with RGB videos or depth data,
skeleton sequences that consist of locations of key points are
more robust to the human body scales, dynamic circumstan-
ces, camera viewpoints, and interferential background [15],
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(a) Local granularity. (b) Context granularity. (c) Global granularity.

Fig. 1. The three types of granularities in human skeletons. (a) local
granularity: covers one-joint skeleton sequence; (b) context granularity:
covers partial-joint skeleton sequence; and (c) global granularity: covers
all-joint skeleton sequence.

with different class labels are close from the global view, such
as “reading” versus “writing”, “drink water” versus “eat
meal”, which make the conventional contrastive learning con-
fused. To better distinguish the details of similar actions, a nat-
ural way is to jointly consider the global and local feature
distances among samples in contrastive learning process, as
well as learning more abundant features for action recogni-
tion. More specifically, we define three granularities in skele-
ton sequences, namely local, context, and global granularity,
as shown in Fig. 1. Among them, the local and context granu-
larity refer to the situation in which the representations of skel-
etons can be learned from the one-joint and the partial-joint
skeleton sequences, respectively, which supplement more dis-
criminative information for recognizing human actions.

In summary, it is necessary to evolve contrastive learning
to learn multi-granularity representations instead of single-
granularity representations. In this work, we propose a novel
Multi-granularity Anchor-Contrastive representation Learn-
ing (MAC-Learning) method that aims to learn the latent
semantic links of human joints, and then obtain multi-granu-
larity action representations. Specifically, MAC-Learning con-
ducts inter- and intra-granularity contrastive pretext tasks on
the learnable and structural-link skeletons among three types
of granularities covering local, context, and global views.
Here, the inter-granularity contrastive pretext task includes
the local-context, local-global, and context-global granularity
contrasts. And the intra-granularity contrastive pretext task
includes the local-local, context-context, and global-global
granularity contrasts. Correspondingly, we design a new
Multi-granularity Anchor-Contrastive Loss (MAC-Loss) con-
taining the inter- and intra-granularity contrastive losses on
the learnable and structural-link skeletons among three types
of granularities to encourage the agreement/disagreement
between the soft-positive /negative pairs rather than the hard-
negative/positive pairs in conventional contrastive loss.
Here, to avoid the disturbance of ambiguous pairs from noise
and outlier samples, we leverage Anchor Graph with anchor
and sample adjacency to capture the high-confidence soft-
positive/negative pairs for the first time.

The overall framework of the proposed MAC-Learning is
shown in Fig. 2. It mainly consists of Graph Convolutional
Network [35] (GCN), Context Graph Convolutional Net-
work [35] (Context GCN), Global Average Pooling (GAP),
Anchor Graph, Multi-granularity Anchor-Contrastive Loss
(MAC-Loss), and Recognition Loss. First, given the skeleton
sequences, their local features are obtained by feeding them
into GCN on learnable-link graph or structural-link graph.
Meanwhile, their global features and context features are
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obtained by feeding them into GCN and Context GCN on
learnable-link graph or structural-link graph followed by
GAP, respectively. Second, the multi-granularity features
(including local, context, and global features) of one skele-
ton sequence (sample) are integrated into one fused feature,
which can be seen as one node on an anchor graph. Then,
the distribution of all samples on this anchor graph can be
represented by a certain number of anchors [36]. Third, the
sample adjacent matrix and anchor adjacent matrix on such
anchor graph are leveraged to define the soft-positive/nega-
tive pairs, as well as weight the distance between soft-posi-
tive/negative pairs in the following MAC-Loss. Finally,
MAC-Loss and Recognition Loss jointly train the whole
model of MAC-Learning, as well as learn the semantic links
among human joints. Among them, MAC-Loss containing
inter- and intra-granularity contrastive losses closely pulls
the distance between soft-positive pairs, while pushing
away the distance between soft-negative pairs.

Overall, the main contributions in this work can be sum-
marized as follows,

e To address the problem of semi-supervised skeleton-
based action recognition, we propose a novel Multi-
granularity Anchor-Contrastive Representation Learn-
ing (MAC-Learning) framework that learns the latent
semantic links of human joints and obtains more multi-
granularity action representations on both labeled and
unlabeled data.

e To avoid the disturbance of ambiguous pairs from
noise and outlier samples, we leverage the Anchor
Graph with anchor and sample adjacency to capture
the high-confidence soft-positive/negative pairs in
contrastive representation learning for the first time.

e To obtain more multi-granularity representations,
we design a new Multi-granularity Anchor-Contras-
tive Loss (MAC-Loss) that contains the inter- and
intra-granularity contrastive losses on the learnable
and structural-link skeletons among three types of
granularities to jointly measure the agreement/dis-
agreement between soft-positive/negative pairs.

e We conduct extensive experiments on two public
benchmarks to illustrate the effectiveness of the
proposed MAC-Learning method compared with
state-of-the-art methods in a semi-supervised skele-
ton-based scenario.

2 RELATED WORK

2.1 Supervised Skeleton-Based Action Recognition
For the skeleton-based action recognition task, traditional
methods always design various handcrafted features to repre-
sent the human skeleton actions [37], [38]. However, their per-
formance is limited, since the handcrafted features sometimes
cannot fully adapt to the downstream tasks. Subsequently,
various deep learning-based methods have been proposed to
address the problem of skeleton-based action recognition by
employing CNN or RNN to learn action representations,
mainly including CNN-based methods [15], [27], [39], and
RNN-based methods [22], [40], [41]. For example, Du et al.
[27] regarded the joint coordinates of skeleton sequences as an
image, and further proposed learning more discriminative
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Fig. 2. The overall framework of MAC-Learning, mainly consisting of GCN, Context GCN, Global Average Pooling (GAP), Anchor Graph, Multi-granu-
larity Anchor-Contrastive Loss (MAC-Loss), and Recognition Loss. MAC-Learning aims to learn the latent semantic links of human joints, and then
obtain more multi-granularity action representations. The human skeleton data is constructed as two types of graphs with learnable links and struc-
tural links to obtain the global feature, local features, and context feature via GCNs, Context GCNs. Then, Anchor Graph is built to obtain the repre-
sentative anchors with the corresponding anchor and sample adjacent matrices, which capture the high-confidence soft-positive/negative pairs in
MAC-Loss. Finally, MAC-Loss containing inter- and intra-granularity losses measures the distance between soft-positive/negative pairs, and trains

the whole model for action recognition allied with recognition loss.

joint information by CNN. Du et al. [22] utilized RNNs to
model each body part and integrated the representation over
time. However, CNN-based or RNN-based methods regard
skeleton data as pseudo-images or frames over time, which
cannot capture the structural information in skeleton motions.
Recently, a great number of works have modeled skeleton
data via graph convolutional network (GCN) to learn the
structural representations of skeletons [13], [14], [29], [30],
[31], [42]. Generally, these works regarded human skeletons
as a graph by setting the joints and bones as nodes and edges,
respectively. For example, Yan et al. [13] proposed a spatial-
temporal graph convolution to aggregate joint features. Based
on this, Shi et al. [29] proposed an adaptive graph convolu-
tional network to learn flexible topology graphs in a data-
driven manner instead of fixed graphs. Furthermore, Chen
et al. [42] modeled the graph topology of skeletons to aggre-
gate joint features by learning a shared topology as a generic
prior and refining it with channel-specific correlations. In gen-
eral, all the above deep-learning methods adopt a supervised
training way that requires a large amount of labeled data.

2.2 Semi-Supervised Skeleton-Based Action
Recognition

Semi-supervised learning learns from both labeled and unla-

beled data [43]. To date, there have been semi-supervised

skeleton-based action recognition methods [44], [45], [46],

[47], [48], [49], [50]. In the early stage, some dimensionality
reduction or clustering algorithms were utilized to alleviate
the problem of insufficient labeled data [44], [45].

Due to its powerful representation ability, deep learning
has become the dominant model to learn the features of
unlabeled data [46], [47], [48], [49], [50]. These deep learn-
ing-based methods are mainly inspired by the ladder net-
work [51], [52], which is one of the representative
approaches in semi-supervised learning to simultaneously
train a deep auto encoder on unlabeled data, and train a
neural network on labeled data. Specifically, similar to the
idea of ladder networks, researchers usually leverage an
encoder model to learn the representations of unlabeled
data being consistent with those of original augmented
data or labeled data. For example, Liu et al. [47] added ran-
dom augmentation or noise to unlabeled data, and learned
that the representation of the original data being consistent
with noisy data via an LSTM encoder. Si et al. [48] pre-
sented an adversarial encoder framework that aligned the
feature distribution of labeled and unlabeled samples by
exploring the data relations within a neighborhood in a
self-supervised manner. Li et al. [50] employed an encoder-
decoder RNN to learn the latent representations of unla-
beled skeleton sequences based on the reconstructed con-
sistency, and then performed active learning to select
skeleton sequences to be labeled based on the cluster and
classification uncertainty.
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In this work, we employ contrastive learning to simulta-
neously learn more action representations of augmented
data being consistent with those of the original data, and
being inconsistent with those of other irrelevant data. Com-
pared with previous semi-supervised skeleton-based action
recognition methods, there are two main insights in this
work: the augmentation is learnable; and the feature-level
consistency and inconsistency are jointly considered.

2.3 Unsupervised Skeleton-Based Action
Recognition

Unsupervised learning aims to learn action representations
only from unlabeled data, and self-supervised learning is a
type of unsupervised learning. For the past few years, self-
supervised and unsupervised methods for skeleton-based
action recognition have emerged [32], [33], [34], [53], [54],
[55], [56], [57], [58], [59], [60], [61]. In the beginning,
researches adopted the encoder-decoder scheme as the core
to develop various frameworks for learning features of skel-
eton motions from unlabeled data. For example, Zheng
et al. [53] presented a conditional skeleton inpainting frame-
work with an encoder-decoder scheme to capture the long-
term global motion dynamics in skeleton sequences guided
by additional adversarial training strategies. Su et al. [56]
proposed an encoder-decoder recurrent neural network to
cluster similar motions by self-organizing the hidden states
of sequences into a feature space. Kundu et al. [54] proposed
a new hierarchical fusion of five different body parts, where
body parts were first fused into the upper and lower body
representations, and subsequently into a full-body repre-
sentation. Such fusion strategy is heuristic that requires to
pre-define the fine-grained parts. Different from [54], the
proposed method adopts the attention mechanism to auto-
matically learn the fusion of some key joints as the context
features, besides local and global features. And then the
local, context, and global features of multiple granularities
are jointly learned and further integrated in the summing
fusion way. For such multi-granularity scheme, Li et al. [62]
proposed to divide the images into fine, medium, and
coarse granularities according to different resolutions,
which is very beneficial and meaningful for extracting local
details. Our work divides the skeletons into local, context,
and global granularities based on the biological structure of
human body. Here, the local granularity and global granu-
larity denote the single-joint information and global-skele-
ton information, and the context granularity denotes the
aggregation of some joints that participate the key motions.
Thus, the idea of our work is also meaningful for learning
the abundant action features.

Recently, some contrastive representation learning meth-
ods have shown remarkable performance for either unsuper-
vised or self-supervised skeleton-based action recognition
tasks [32], [33], [34], [55], [57], [58], [60]. Among them, some
methods are devoted to designing various augmentation
strategies [32], [33], [60]. For example, Rao et al. [32] designed
multiple augmentation strategies to learn the action repre-
sentations in a contrastive learning framework. Gao et al.
[33] presented an augmentation way with the combination
of sample viewpoint and distance to explore invariant
motion semantics in contrastive learning. Su et al. [60]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 6, JUNE 2023

presented a speed-changed and motion-broken based aug-
mentation strategy to capture the dynamic motion consis-
tency in contrastive learning. Moreover, some methods are
also devoted to bringing in multiple pretext tasks to learn the
action representations in terms of robustness or generaliza-
tion [34], [55], [57], [58]. For example, Xu et al. [57] combined
the prototypical contrast and the reversed prediction pretext
tasks to jointly learn action representations and predicting
the future skeleton motions. By integrating multiple different
pretext tasks, including motion prediction, contrastive learn-
ing, and puzzle recognition, Lin et al. [55] proposed a multi-
task self-supervised learning to learn more generalized
action features that were adaptive for different tasks. Li et al.
[34] proposed a cross-view contrastive learning framework
to learn multi-view features by integrating cross-view con-
trastive and consistent knowledge mining tasks.

Overall, above methods based on contrastive learning con-
duct contrastive pretext tasks in the global granularity, which
cannot well capture the local joint movements. In this work,
MAC-Learning introduces inter- and intra-granularity con-
trastive pretext tasks to learn more multi-granularity action
representations covering local, context, and global three gran-
ularities for capturing more discriminative information in
skeleton sequences, especially for some local joint movements.

2.4 Contrastive Learning
In recent years, contrastive learning has attracted consider-
able attention [63], [64], [65], [66], [67]. For contrastive learn-
ing, researchers aim to build specific models for various
tasks mainly by designing new augmentation strategies or
evolving the contrastive formulation. On the one hand,
many augmentation strategies have been presented, where
some representative strategies have been introduced in
section 2.3. On the other hand, various contrastive formula-
tions have been designed. For example, He et al. [63] pro-
posed a momentum contrast model that constructed a
dynamic dictionary to store more negative samples, and
introduced a momentum-based moving encoder to main-
tain the consistency among mini-batches. To model the
view invariance, Tian et al. [64] proposed a multi-view con-
trastive learning model to maximize the mutual information
in different views of the same scene. Furthermore, Chen
et al. [65] explored compositions of different augmentations,
and introduced a learnable nonlinear layer between repre-
sentations and contrastive loss to improve the quality of the
learned representations. Moreover, some works also
explored the memory consumption in contrastive learn-
ing [66], [68]. For example, Caron et al. [66] conducted con-
trastive loss at the cluster level instead of the sample level
for relieving the computational challenge to some extent.
Overall, the core of contrastive loss [69] is to enforce the
feature consistency between query and positive samples,
and the discrimination between query and negative samples
by calculating the distance between sample representations.
The proposed Multi-granularity Anchor-Contrastive Loss
(MAC-Loss) improved from previous contrastive learning
methods leverages the sample adjacent matrix and anchor
adjacent matrix produced by the anchor graph to reinforce
the agreement between soft-positive pairs and the disagree-
ment between soft-negative pairs.
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3 METHODOLOGY

3.1 Overview of MAC-Learning

The main framework of the proposed MAC- Learmng is
shown in Fig. 2. For human skeleton set V = {v,}7_,, one
skeleton data is denoted as v, € RE*T*@*F (7 is the number
of channels, T is the total number of frames, Q is the num-
ber of joint points of each person, and P is the number of
people in each frame.

First, the skeleton data v; is input into Graph Convolu-
tion Network (GCN) [35] G (-) on the learnable-link graph,
followed by Global Average Pooling (GAP), to obtain the
global feature f;. And the local features f; are obtained by
inputting v, into the GCN G5(-) on the learnable-link graph.
At the same time, v, is input into Context Graph Convolu-
tion Network (Context GCN) [35] G3(-) on the learnable-
link graph and GAP in turn to obtain the context feature fc.
Similarly, v, is input into Context GCN G,(-) with GAP,
GCN G5(+), and GCN Gg(+) with GAP on the structural-link
graph to obtain the context feature i, local features h;, and
global feature hq, respectively. The multiple features
{fe, fr, fo.he, hi, he} corresponding to v, are fused into a
feature D, by the summm% operation. Thus, all fused fea-
tures corresponding to {v,}._, can be denoted by {D,}?_,.

Second, we build an anchor graph by setting {D,}7 | as
nodes, and implementing the clustering algorithm to obtain
M anchors. Then, the sample adjacent matrix ¥ and anchor
adjacent matrix Z based on this anchor graph are calcu-
lated [70], [71]. Here, W represents the relationship between
samples. Z represents the relationship between the samples
and anchors.

Third, we define the soft-positive /negative pairs instead of
traditional positive /negative pairs based on the anchor adja-
cent matrix Z, and utilize the sample adjacent matrix W to
weight the distance between soft-positive/negative pairs. As
a result, Multi-granularity Anchor-Contrastive Loss (MAC-
Loss) pulls the distance between soft-positive pairs closely
while pushing away the distance between soft-negative pairs
via the inter- and intra-granularity contrastive losses on the
learnable and structural-link skeletons among the local, con-
text, and global views. Finally, MAC-Loss and Recognition
Loss jointly train the whole model of MAC-Learning, where
the former aims to learn more effective action representations
while the latter aims to learn the classifier.

3.2 Graph Convolution Network and Context Graph
Convolution Network

We introduce Graph Convolution Network (GCN) and Con-
text Graph Convolution Network (Context GCN) to extract
the spatial-temporal features of skeleton sequences [35]. Spe-
cifically, GCN is stacked by multiple GCN blocks. Fig. 3
shows the architecture of each GCN block, which mainly
consists of Spatial GCN (SGCN), Temporal GCN (TGCN),
BatchNorm, and ReLLU. Here, SGCN is defined as follows:

Ky
fo’ut = Z Wk(fi1114k)7 (1)
k

where f;,, and f,, are the input and output feature maps
respectively, W}, is the parameter of network, K denotes

the kernel size of the spatial dimension, A, = A, A A2, Ay
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SGCN — BN — RelU — TGCN — BN — RelU —49—

SGCN — BN — RelU — Attention — TGCN — BN — RelU —49—

Fig. 3. Architecture of GCN block (above) and Context GCN block
(below) in details. BN is short for BatchNorm, and RelLU is a nonlinear
activation function.

is an adjacency matrix of human skeleton graph, and A} =
> 7([1}3 ). TGCN is an ordinary L x 1 convolutional layer to
aggregate the contextual representations embedded in adja-
cent frames, where L denotes the length of temporal win-
dows. Similar to GCN, Context GCN is stacked by multiple
Context GCN blocks with attentions. As shown in Fig. 3, the
difference between Context GCN and GCN blocks is that
each Context GCN block additionally contains an attention
module to capture the key joints as the context joints.

Either for GCN or Context GCN, the skeleton graph is
constructed by setting the joints as nodes, and the links
between joints as edges. Similar to the construction of joint
links in [35], there are two types of links, i.e., the learnable
links' and structural links. The former can be learned with
different structures for different action classes, while the lat-
ter is inherently based on the human body. In GCN G| (-),
G5 (-), and Context GCN Gj(-), the multi-granularity skele-
ton features are learned by graph convolution on the learn-
able-link graph for skeleton data. In Context GCN Gy(-),
and GCN G5(+), Gg(-), the multi-granularity skeleton fea-
tures are learned by graph convolution on the structural-
link graph for skeleton data. Finally, all features learned by
G1(+), Go(+), Gs(+), Ga(+), G5(), and Gg(+) are complemented
to obtain more powerful representations.

3.3 Anchor Graph

Anchor Graph [70], [71] has been successfully used in large-
scale data mining and indexing. In this work, we leverage
Anchor Graph to measure the relationship between skeleton
data for boosting the performance of contrastive representa-
tion learning. As shown in Fig. 2, for one skeleton data v,,
we have the local features f;, = G2(vs), hr = G5(vs), context
features fo = GAP(Gs(vs)), he = GAP(G4(v,)), and global
features fo = GAP(G1(vs)), hg = GAP(Gg(vs)). Then, all
multi-granularity features {f1, fc, fa, hi, ho, he} are inte-
grated to form one fused feature D, by the summing opera-
tion. Furthermore, we set the fusion features {D; }9 '
corresponding to {v,}%_ as nodes in an anchor graph. Next,
{A,}M anchors are obtained by the k-means clustering
algorithm for representing the distribution of all samples,
where M < S. Formally, the anchor adjacent matrix Z on
anchor graph can be calculated as follows:

Klz(DsaAm)
Zm 6( 5) K}L(Dé7 Am )
exp(—||D, — A ||*/2h?)

- ¥m e (s), (2)
Zm’e(s) eXp(—HDS - Am/ HQ/QhZ) < >

Zs,m -

1. More details about learning links among joints can be found
in [35].
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where Z ,,, denotes the distance between sample v, and anchor
A,,, Kj(-) adopts Gaussian kernel function, h is a hyperpara-
meter, and (s) is the index set of the top-r closest anchors of
sample v,. Then, the sample adjacent matrix W denoting the
relationship between samples can be calculated as follows:

W=2ZA"1ZT, (3)

where the diagonal matrix A € RM*M is defined as A, =
ZS 1 Zsm- Thus far, the anchor adjacent matrix Z and the
sample adjacent matrix W can be used to measure the rela-
tionship between skeleton data, which can help construct
and confirm the soft-positive/negative pairs in the follow-
ing contrastive learning process. To the best of our knowl-
edge, this is the first work to leverage Anchor Graph to
measure the relationship among skeleton data for boosting
the performance of contrastive representation learning.

3.4 Multi-Granularity Anchor-Contrastive
Loss (MAC-Loss)

Multi-granularity Anchor-Contrastive Loss (MAC-Loss)
includes inter- and intra-granularity contrastive losses on
the learnable and structural-link skeletons among three
types of granularities, i.e., local, context, and global. Specifi-
cally, inter-granularity contrastive losses refer to contrasting
the features of different granularity, and intra-granularity
contrastive losses refer to contrasting the features of the
same granularity, as shown in Fig. 2.

In Anchor Graph, the anchor graph with the anchor adja-
cent matrix Z and sample adjacent matrix W has been built.
In MAC-Loss, for any two samples, we define them as the
soft-positive pair if their closest anchors are the same, and
the negative pair otherwise. Assuming that the batch size in
the model training process is N, for skeleton data {uv, }n 1, the
corresponding multi-granularity features can be denoted as

Fr={thr Fo={f}an Fo = {8} Mo = (Wi 1y,
He = {h"c'}fy:l,and He={ 767?}2[:1

Formally, we denote U V= FoUFe as the global-context
feature set within 2V features. The global-context contras-

tive loss £}, between global features F¢ and context fea-
tures F¢ is expressed as follows:

) D SR IR 1 uz}] - Wi ;- exp({(gi, 95))
£mf€'r = Z IOg 2N (4)
— St Lz - Wik - exp({i, gi))

where g;, g; € U'; Z' is changed from anchor adjacent matrix
Z by setting all elements to zero except for the maximum
value in each row, namely retaining only one closest anchor
for each sample; (u,v) = (Hyu)"Hy/(z - |Huul - || Hpol]),
where 7 is a hyperparameter, H, and H, are the projection
matrices; and 1, is an indicator function that is equal to 1 if
the condition inside the square brackets is true, and 0 other-
wise. Compared with the formulation of conventional con-
trastive loss, there are two main changes in Eq. (4): 1) The
indicator function 1 2=z aims to find the soft-positive

pairs. 2) The weight W;; aims to measure the important
degree of the distance between g; and g; in MAC-Loss.
Similar to the formulation of £!, in Eq. (4), the other

inter
inter- and intra-granularity contrastive losses can also be
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TABLE 1
Definition of Inter- and Intra-Granularity Contrast Losses in
MAC-Loss
Notations Descriptions
L‘llmcr Global-context contrastive loss among U = F gUF ¢

L‘mm Global-local contrastive loss among U*=F cUF |
Efmr Local-context contrastive loss among U* = F [ UF ¢
E:mer Global-context contrastive loss among U =HoUHe
Lfnte,, Global-local contrastive loss among U° =HcUH .
Efnm, Local-context contrastive loss among US=H; UHc
E:mm Global-global contrastive loss among O'=FoUHq
E,Zntm Local-local contrastive loss among O° =7, UH,,
Ly Context-context contrastive loss among O° =
FcUHe
formulated as £2,., £, Ci. , C0 L8 L L]

inter’ inter”’ inter” inter’ inter’ intra’ intra’
and £Z-”tm, as shown in Table 1. It is noted that one local fea-
ture f; in F, can be seen as the combination of ) sub-features
corresponding to all @ human joints. Thus, the contrastive
loss of formula (4) is first calculated as the contrastive sub-
loss between each local sub-feature in ¥, and each global fea-
ture in F¢, and then the @) sub-losses are averaged to obtain
the loss £2 . (obtain £2 . , £> . £5 L2 —in the same

way). Finally, to integrate all inter- and intra-granularity con-
trastive losses, MAC-Loss is defined as follows:

Loon =L}, +£m, + L3 Lt L

inter
+ ‘C mtm + ‘Cmtm + ‘Cmtm (5)

inter inter inter

771t€7

Meanwhile, the action recognition loss L,., can be formu-
lated as:

['re,g - _yTlog (:’”7 (6)

where § = softmax(D;), and y is the ground-truth label of the
action. In this work, we utilize MAC-Loss and Recognition
Loss to jointly train the whole model of MAC-Learning, and
define the object function ¥ (8) of MAC-Learning as follows:
W(9) = miniemize(ﬁmn + Lreg) (@)

where 0 is the parameter set of MAC-Learning. Algorithm 1
summarizes the main implementations of MAC-Learning.

4 EXPERIMENTS

4.1 Dataset

To evaluate the performance of the proposed method, we
adopt two publicly accessible datasets as the benchmarks,
including NTU RGB+D dataset [41], and Northwestern-
UCLA dataset [72].

NTU RGB+D Dataset [41]. The NTU RGB+D dataset is a
large-scale dataset including 56,578 skeleton action sequen-
ces from 60 different action classes, which are performed by
40 volunteers with 25 joints for each body, and collected by
three Microsoft Kinect v2 cameras. We follow two standard
evaluation protocols, namely Cross-Subject (CS) and Cross-
View (CV) protocol. In the CS protocol, the training set
includes 40,091 skeleton sequences from 20 volunteers, and
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the testing set includes 16,487 skeleton sequences from the
other 20 volunteers. In the CV protocol, the training set
includes 37,646 skeleton sequences from Cameras 2 and 3,
and the testing data contain 18,932 skeleton sequences from
Camera 1. For the training setting in the semi-supervised
scenario, we only use 5%, 10%, 20%, and 40% labeled data,
and the corresponding remaining unlabeled data.

Algorithm 1. MAC-Learning

Input:

V: skeleton sequences V = {v,}?_,

K : total optimization steps

y : ground-truth label

h, T : hyperparameter

fork=1to K do
// obtaining of multi-granularity features
fr fer fa = Ga(vs), GAP(G3(vy)), GAP(G1(vs))
hr, he, hg = Gs(vs), GAP(G4(v,)), GAP(Gg(vs))
/ / Anchor graph

qulOIl(fL7 f(', fg, hL7 hc, hg)

{Am} _, = clustering({ D, }2_)
Kh(DmAm)
Zs,m = - ,Vm € (s
Zm/€<5) Kh(stAm’) < >
W=zA"2"

// Multi-granularity Anchor-Contrastive Loss (MAC-Loss)

Fl 7#2] HZ’ z Wij-exp((gi,9i))

Zlo

mter

N L - Wik - exp((gi, 1))

1 2 3 4 5
ECO" Emfm + ‘cmt(r + £zntu + [’mt(’r + ‘Cmt(r
6 1 2 3
+ Emtel + ‘Cmtm + ﬁmtra + Emtm
// Object function
§ = softmax(D;)
Lreg = —y'log (9)

V() = mlmemlze(ﬁc(m + Lreg)

Update parameter set 8 using SGD to optimize ¥
end for

Northwestern-UCLA (NW-UCLA) Dataset [72]. The NW-
UCLA dataset includes 1,494 samples from 10 different action
classes, which were collected by three Kinect vl cameras, and
performed by 10 volunteers with 20 skeleton joints for each
body. We follow the recommended evaluation protocol,
where the training set contains 1,018 samples from the first
two views, and the testing set includes 476 samples from the
third view. For the training setting in the semi-supervised sce-
nario, we only use 5%, 15%, 30%, and 40% labeled data, and
the corresponding remaining unlabeled data.

4.2 Experimental Setting and Implementation

In the data preparation phase, all skeleton sequences are
temporally resized to the fixed-length T' = 50 frames by lin-
ear interpolation for both NTU RGB+D and NW-UCLA data-
sets, which is similar to [34]. In the semi-supervised training
setting, we sample labeled data from NTU RGB+D and NW-
UCLA datasets in a category-balanced strategy consistent
with most methods, referring to [48]. Specifically, on NTU
RGB+D, the training set contains approximately 33 (5%), 66
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(10%), 132 (20%), and 264 (40%) labeled skeleton sequences
per class in CS protocol, and contains approximately 31 (5%),
62 (10%), 124 (20%), and 248 (40%) labeled skeleton sequen-
ces per class in CV protocol. Likewise, on NW-UCLA, the
training set contains approximately 5 (5%), 15 (15%), 30
(30%), and 40 (40%) skeletons per class. Here, the training set
also contains the corresponding remaining unlabeled skele-
ton sequences. Finally, the testing data contain all labeled
data on both NTU RGB+D and NW-UCLA datasets.

For the configuration of MAC-Learning, both GCN and
Context GCN contain five blocks, and a fully connected layer
is added at last. And the parameters of GCN G (-) and GCN
G5 (-) are shared, as well as the parameters of GCN G5(-) and
GCN Gg(-) are shared. The summing fusion is used to fuse
multiple features into a single feature. In Anchor Graph, h is
set to the average of the maximum values of the distance
between N sample nodes and top-r nearest anchors, M is set
as the total number of classes (i.e., 60 and 10 in NTU RGB+D
and NW-UCLA respectively), and r is set as 6 and 4 via diag-
nostic studies on NTU RGB+D and NW-UCLA respectively,
where the diagnostic studies can be found in Section 4.6.2.
Moreover, we adopt the k-means clustering algorithm [36] to
calculate M cluster data as anchors because it is simple yet
effective. In the process of k-means clustering, M/ samples are
randomly selected from all training samples as the initial clus-
ter centers. Then, the euclidean distance between each sample
and each cluster center is calculated, and each sample is
assigned to the closest cluster center to form a cluster. After
all samples are assigned, the cluster centers are recalculated
according to existing samples of clusters. These steps are
repeated until no samples are reassigned to different clusters
or the maximum number of iterations is reached. The final M/
cluster centers are the M anchors. To trade off computation
and performance, we perform clustering and compute the
anchor graph every 20 epochs. In the formulation of MAC-
Loss, the value of hyperparameter t is empirically set as 0.07.
On NTU RGB+D, the batch size, momentum, initial learning
rate, weight decay, and total epochs are set as 64, 0.9, 0.08,
10%, and 70, respectively. On NW-UCLA, the batch size,
momentum, initial learning rate, weight decay, and total
epochs aresetas 16,0.9,0.1, 10~4, and 100, respectively.

In the training process, Stochastic Gradient Descent (SGD)
is employed to optimize the whole network, and the learning
rate is reduced via cosine annealing. Moreover, a warmup
strategy [78] is utilized in the first 10 and 20 epochs on NTU
RGB+D and NW-UCLA, to make the training procedure more
stable. On the NW-UCLA and NTU RGB+D datasets, the one-
time computation time of anchor graph with clustering are
approximately 38 seconds and 12 minutes, respectively, as
well as the training time of one epoch are approximately 32
seconds and 14 minutes by using a Titan RTX GPU. All experi-
ments are performed via the PyTorch deep learning frame-
work on the Linux server equipped with a Titan RTX GPU.
The source codes of MAC-Learning are publicly available at
https:/ /github.com/1xbql/MAC-Learning.

Without loss of generality, Fig. 4 shows the changes of
whole loss, recognition loss, and each contrastive loss during
the whole training process on NTU RGB+D (CV) with 10%
labeled data and NW-UCLA with 30% labeled data, respec-
tively. Specifically, the left column represents the change of
the whole loss along with the training, the middle column

horized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 06,2023 at 13:07:49 UTC from IEEE Xplore. Restrictions apy


https://github.com/1xbq1/MAC-Learning

7566

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 6, JUNE 2023

NTU RGB+D NTU RGB+D NTU RGB+D
<Whole loss =Accuracy (%) ~Recognition Loss Inter loss1eInter loss2<Inter loss3<Inter loss4=inter loss5
10 8 <Inter loss6+Intra loss1-Intra loss2Intra loss3
8 0.8
6
6 0.6 »
4 4 0.4
2 N 2 0.2 \
o 0 0 K\’:::*:: S
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epochs Epochs Epochs
NW-UCLA NW-UCLA NW-UCLA
<Whole loss =Accuracy (%) <~Recognition Loss Inter loss1+Inter loss2«Inter loss3<Inter loss4=Inter loss5
25 20 “Inter loss6*Intra loss1-Intra loss2Intra loss3
20 !
1 08 |
1 \ 10 0.6 *
0 0.4
0.2 L_ B

’ \-M-___ 5
0 0

0 10 20 30 40 50 60 70 80 90 100
Epochs

0 10 20 30 40 50 60 70 80 90 100
Epochs

0 ==

0 10 20 30 40 50 60 70 80 90 100
Epochs

Fig. 4. The changes of the whole loss, recognition loss, and each contrastive loss on NTU RGB+D (CV) with 10% labeled data and NW-UCLA with

30% labeled data.

represents the change of the recognition loss along with the
training, and the right column represents the changes of each
contrastive loss along with the training. We can see that: 1)
The change of the whole loss tends to be stable at approxi-
mately 70 and 100 epochs on NTU RGB+D and NW-UCLA,
respectively; 2) Both recognition loss and MAC-Loss rapidly
converge in early iterations; 3) MAC-Loss converges slightly
faster than the recognition loss, and the convergence rates of
all contrastive losses in MAC-Loss are similar.

4.3 Result and Analysis
4.3.1 Comparison on NTU RGB+D

We evaluate the performance of the proposed MAC-Learning
on the NTU RGB+D dataset by comparing it with the currently
representative methods, including semi-supervised methods
(e.g.,S 4L [73], Pseudolabels [74], VAT [75], VAT+EntMin [76],
ASSL [48]), and unsupervised methods (e.g.,, AS-CAL [32],

LongT GAN [53], Holden et al. [77], ENGAN-PoseRNN [54],
MS 2 L [55], Skeleton-Contrastive [58], and 3s-CrosSCLR [34]).
The comparison of recognition accuracies obtained by different
methods on the NTU RGB+D dataset is shown in Table 2. We
can see that the proposed MAC-Learning achieves better accu-
racy than the alternatives. This illustrates that MAC-Learning
is effective for addressing the problem of semi-supervised skel-
eton-based action recognition.

Specifically, compared with semi-supervised methods,
MAC-Learning improves by 10.4% compared with the
SOTA semi-supervised method (i.e, ASSL with an accuracy
of 68.0%) on the CS protocol with 20% labeled data. Here,
ASSL learns the single-granularity features by aligning the
feature distribution of labeled and unlabeled data. Unlike
ASSL, MAC-Learning learns the multi-granularity features
of labeled and unlabeled data. Compared with unsuper-
vised methods, MAC-Learning performs better than most
of the other alternatives, and is comparable to 3s-CrosSCLR.

TABLE 2
The Comparison Among Recognition Accuracies (%) Obtained by Different Methods on NTU RGB+D (CS, and CV) With 5%, 10%,
20%, and 40% Labeled Data of Training Set

Method 5% 10% 20% 40%
Cs cv Cs cv Cs cv Cs cv
1541 [73] 48.4 55.1 58.1 63.6 63.1 71.1 68.2 76.9
tPseudolabels [74] 50.9 56.3 58.4 65.8 63.9 712 69.5 77.7
WAT [75] 51.3 57.9 60.3 66.3 65.6 72.6 70.4 78.6
'WAT+EntMin [76] 51.7 58.3 61.4 67.5 65.9 73.3 70.8 78.9
tASSL [48] 57.3 63.6 64.3 69.8 68.0 74.7 72.3 80.0
TAS-CAL [32] - - 522 57.3 - - - -
"LongT GAN [53] - - 62.0 - - - - -
"Holden et al. [77] - - - - - - 72.9 81.1
"EnGAN-PoseRNN [54] - - - - - - 787 86.5
MS? L [55] - - 65.2 - - - - -
fSkeleton-Contrastive [58] 59.6 65.7 65.9 72.5 70.8 78.2 - -
f3s-CrosSCLR [34] - - 74.4 77.8 - - - -
MAC-Learning (Ours) 63.3 70.4 74.2 78.5 78.4 84.6 81.1 89.6

The superscripts ¥ and T indicate the semi-supervised and unsupervised methods, respectively. The best and second-best values are highlighted in bold and under-

lined, respectively.
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Fig. 5. Confusion matrices obtained by MAC-Learning on NTU RGB+D and NW-UCLA datasets. The accuracies (%) are reported on NTU RGB+D
(CS) with 5% and 20% labeled data, NTU RGB+D (CV) with 5% and 20% labeled data, as well as NW-UCLA with 5% and 30% labeled data.

Here, 3s-CrosSCLR is also a contrastive learning method to
pursue high-confidence positive/negative pairs by mining
the multi-view knowledge of data. Similar to 3s-CrosSCLR,
MAC-Learning pursues the high-confidence positive/nega-
tive pairs via and anchor graph. Thus, pursuing high-confi-
dence positive/negative pairs is effective in contrastive
learning. Compared with 3s-CrosSCLR, MAC-Learning
provides another idea to pursue the high-confidence posi-
tive/negative pairs. Moreover, the proposed MAC-Learn-
ing improves by at least 7.6% on the CS protocol with 20%
labeled data compared with some contrastive learning
based unsupervised methods, i.e., AS-CAL [32], MS 21, [55],
and Skeleton-Contrastive [58], except for 3s-CrosSCLR. In
addition, most methods perform better on Cross-View (CV)
protocol than Cross-Subject (CS) protocol. For the same
action on the CS protocol, the amplitude or some habitual
local noise of actions performed by different people may be
different. On the CV protocol, although the same action has
different view difference, the input data are the location
information of skeleton joints in 3D coordinates, and the rel-
ative distance between skeleton joints remains unchanged.
Therefore, the performance on the CS protocol is not as
good as the CV protocol.

The confusion matrices obtained by MAC-Learning on
NTU RGB+D with 5% and 20% labeled data are shown in
Fig. 5. From these confusion matrices (as shown in the first
two-column figures), we can see that the main diagonal
color of the 20% labeled data setting is darker than that of
the 5% labeled data setting. This illustrates the overall
improvement of all class accuracies when the number of
labeled data increases.

Finally, Fig. 6 (the first two rows) shows some successful
and failure recognition results obtained by the proposed
method from the NTU RGB+D dataset. Since different
actions have some similar local motions, it is easier to con-
fuse the recognition of similar local actions. For example,
the action “clapping” versus “rub two hands together”, and
the action “drink water” versus “brushing teeth” have simi-
lar local motions on the hands, so the failure recognition
results happen.

4.3.2 Comparison on NW-UCLA

We also evaluate the performance of the proposed MAC-
Learning on the NW-UCLA dataset by comparing it with the
currently representative methods, including semi-supervised
methods (e.g., S * L [73], Pseudolabels [74], VAT [75], VAT
+EntMin [76], and ASSL [48]), and unsupervised method
(e.g., MS? L [55]). The comparison among recognition accura-
cies obtained by different methods is shown in Table 3. The
proposed MAC-Learning continually performs better than
the alternatives, which further proves its effectiveness.
Specifically, compared with semi-supervised methods,
MAC-Learning outperforms the SOTA semi-supervised
method on the setting of 5% labeled data by a large margin,
namely improves by 10.4% from 52.6% to 63.0%. Moreover,
the accuracy obtained by MAC-Learning significantly out-
performs the unsupervised method (i.e, MS ? L with an
accuracy of 60.5%), namely 18.3% is higher than the latter.
The confusion matrices obtained by MAC-Learning in
the NW-UCLA dataset with 5% and 30% labeled data are
shown in Fig. 5 (as shown in the last column of the figures).
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Fig. 6. Some recognition results obtained by the proposed method on the NTU RGB+D and NW-UCLA datasets. The first two rows are from NTU
RGB+D, and the last two rows are from NW-UCLA.

We can see that the accuracies for most classes on the setting
of the 30% labeled data are improved, compared with those
on the setting of the 5% labeled data. In particular, for the
third class “drop trash” and the seventh class “donning”,
the corresponding accuracies are obviously improved when
the number of labeled data is changed from 5% to 30%.
Finally, Fig. 6 (the last two rows) also shows some correct
and false recognition results obtained by the proposed
method from the NW-UCLA dataset. It is noted that all

TABLE 3
The Comparison Among Recognition Accuracies (%) Obtained
by Different Methods on the NW-UCLA Dataset With 5%, 15%,
30%, and 40% Labeled Data of Training Set

Method 5% 15% 30% 40%
IS4L[73] 35.3 46.6 54.5 60.6
tPseudolabels [74] 35.6 489 60.6 65.7
WAT [75] 44.8 63.8 73.7 73.9
'WAT+EntMin [76] 46.8 66.2 754 75.6
ASSL [48] 526 748 780 784
fMS? L [55] - 60.5 - -
MAC-Learning (Ours) 63.0 78.8 79.9 81.6

The superscripts ¥ and T indicate the semi-supervised and unsupervised meth-
ods, respectively. The best and second-best values are highlighted in bold and
underlined, respectively.

samples of the NW-UCLA dataset come from different per-
spectives. For example, the action “pick up with one hand”
and “pick up with two hand” are easily confused in the
hand part, as well as the action “throw” and “drop trash”
are easily confused due to their similar local motions.

4.4 Qualitative Analysis
4.4.1 Visualization of Learned-Link Skeletons

For the learnable links among joints, MAC-Learning with
MAC-Loss and Recognition Loss can learn different connec-
tions between joints for different actions to enhance the dis-
criminative information for different action classes, which
can be seen as the augmentation links of the original struc-
tural links among joints. It is noted that the ideal learned
links are not the random augmented links, but the latent
semantic links that reflect more discriminative information
of each action class. Thus, we investigate the effectiveness
of learnable links by visualizing some learned links on the
NTU RGB+D and NW-UCLA datasets, as shown in Fig. 7. It
can be seen that some body parts mainly performing the
actions have more links. For example, for “brush hair”,
“cross hands in front”, and “throw” actions, these actions
are mainly performed by hands, so the learned links are
mostly concentrated on the hand joints that connect to the
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brush hair

cross hands in front

kicking other person

walk around

stand up

throw

Fig. 7. Visualization of the learned links between joints by the proposed MAC-Learning on the NTU RGB+D and NW-UCLA datasets. The first three
rows are from NTU RGB+D, and the last three rows are from NW-UCLA. The blue lines denote the structural links, and the orange lines denote
learned links with top 45 and top 35 connections on NTU RGB+D and NW-UCLA dataset, respectively.

other joints. For “kicking other person” and “walk around”  the learned links are mostly concentrated on the head, limbs
actions, they are more related to the movements of the feet, and abdominal joints, which is also consistent with the fact.
so the learned links are mainly concentrated on the foot Overall, we find that when the human joints move more,

[]oints that connect to the other joints. For “stand up” action, the Roint links are more concentrated. This proves that
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Fig. 8. The t-SNE visualization of action features learned by different methods on NTU RGB+D (1st row) and NW-UCLA (2nd row) with 5% labeled

(e) Features by traditional contrastive

(f) Features by MAC-Learning.

data. Following in [34], ten action classes on NTU RGB+D dataset are randomly selected and reported. Best view in color.

learning links among joints can effectively reflect more dis-
criminative information of each action class, which is benefi-
cial to learning the action representations.

4.4.2 Visualization of learned features

Comparison of Features Learned by Different Methods. To illus-
trate the representation ability of the proposed MAC-Learn-
ing, we employ t-SNE to qualitatively visualize the
distribution of the original data, the action features learned
by traditional contrastive learning, and the action features
learned by MAC-Learning. Here, for fair comparison, the
traditional contrastive learning refers to the method only by
adopting global-global contrastive loss in Table 1 with
hard-positive/negative pairs in MAC-Learning. Fig. 8 visu-
alize the distribution of the data and features on the NTU
RGB+D and NW-UCLA datasets. We can see that the action
features learned by contrastive learning become distin-
guishable. In particular, the action features learned by
MAC-Learning are more distinguishable compared with
those learned by the traditional contrastive learning
method, especially on the NW-UCLA dataset. This illus-
trates more powerful ability of MAC-Learning in terms of
representation learning.
Comparison of Features With Different-Granularities. To
clearly compare the discriminative ability of different multi-
ranularity features, we also em \l(ogFt—SNE to visualize the
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Fig. 9. Recognition accuracy (%) obtained by MAC-Learning with varying
ron NTU RGB+D and NW-UCLA with 5% labeled data.
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(f) Context-context.

(h) Global-local. (i) Global-context.  (j) Local-context.

(k) Global-global.

(I) Local-local.  (m) Context-context. (n) MAC-Learning.

Fig. 10. The t-SNE visualization of the action features with different granularities learned by MAC-Learning on NTU RGB+D (1st row) and NW-UCLA

(2nd row) with 5% labeled data. Best view in color.

distribution of the action features with different granularities
learned by MAC-Learning. We first learn two-granularity fea-
tures (i.e., global-local granularity features, global-context
granularity features, local-context granularity features), sin-
gle-granularity features (i.e., global granularity features, local
granularity features, and context granularity features), and
three-granularity features (i.e., global-context-local granular-
ity features) by MAC-Learning on NTU RGB+D and NW-
UCLA with 5% labeled data. For example, the global-local
granularity features are learned by MAC-Learning only with
global-local contrastive loss. All of the above features can be
learned in a similar way. The t-SNE visualization of these fea-
tures is shown in Fig. 10. We can see that the distribution of
the three-granularity features is more distinguishable than
those of either two-granularity or single-granularity features.
Here, the distribution of two-granularity features and single-
granularity features are comparable since both are learned
by MAC-Learning with only one type of contrastive loss.
This well demonstrates the advantage of three-granularity
features learned by MAC-Learning in terms of discriminative
ability.

4.5 Ablation Studies

To illustrate the superior idea of the multi-granularity strat-
egy and MAC-Loss in MAC-Learning, we conduct the abla-
tion studies on the NTU RGB+D (CS) dataset with 5%
labeled data. In this work, we first set seven baselines as
follows,

Bl  w/ Single-Granularity wjo Contrastive Learning. It only
uses the global-granularity features of the labeled
data, which are fed into recognition loss for predict-
ing the action classes. It can be seen as the single-
granularity supervised baseline.

B2 w/ Multi-Granularity wjo Contrastive Learning. It uses
the multi-granularity features of the labeled data,
which are fed into recognition loss for predicting the
action classes. It can be seen as the multi-granularity
supervised baseline, which aims to test the superior-
ity of multi-granularity features compared with sin-
gle-granularity features in B1.

B3 w] Single-granularity w/ Traditional contrastive learning.
It uses the global-granularity features of the labeled

and unlabeled data, which are fed into recognition
loss and traditional contrastive loss [65]. It can be
seen as the single-granularity semi-supervised learn-
ing baseline.

B4  w/ Multi-granularity w/ Traditional contrastive learning.
It uses the multi-granularity features of the labeled
and unlabeled data, which are fed into recognition
loss and traditional contrastive loss [65]. It can be
seen as the multi-granularity semi-supervised learn-
ing baseline.

B5  w/ Single-granularity w/ MAAC-Loss. It uses the global-
granularity features of the labeled and unlabeled
data, which are fed into recognition loss and MAC-
Loss. It aims to test the superiority of MAC-Loss
compared with B3.

B6  w/ Multi-granularity w/ MAC-Loss wjo Anchor graph. It
uses the multi-granularity features of the labeled
and unlabeled data, which are fed into recognition
loss and MAC-Loss without Anchor Graph. It per-
forms contrastive learning on hard positive/negative
pairs obtained by clustering.

B7  MAC-Learning (w/ Multi-granularity w/ MAC-Loss).

Table 4 shows the accuracies obtained by different base-
lines on NTU RGB+D (CS) with 5% labeled data. B2 using
multi-granularity features improves the recognition accu-
racy compared with Bl using single-granularity features.
This indicates that multi-granularity strategy is beneficial to
learning richer features compared with the single-granular-
ity strategy. B4(B3) with contrastive learning performs
better than B2(B1) without contrastive learning, which illus-
trates that learning representations on unlabeled data via
contrastive learning can provide more discriminative fea-
tures for the training model. In addition, B5 (with an accu-
racy of 59.2%) improves by 2.6% over B3 (with an accuracy
of 56.6%), and even then it is comparable to B4, though B4
uses richer multi-granularity features. This indicates that
MAC-Loss is more effective than traditional contrastive loss
by measuring the distance between the high-confidence
soft-positive/negative pairs. B6 performs contrastive learn-
ing on hard positive/negative pairs obtained by clustering.
Compared with B4 with traditional contrastive learning, B6
improves by 2.1% indicating the contribution of the MAC-
Loss without the anchor graph. Finally, B7 (namely MAC-
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TABLE 4
Accuracies (%) Obtained by Different Baselines on NTU RGB+D (CS) With 5% Labeled Data

Baseline Accuracy (%)

B1 (w/ Single-granularity w/o Contrastive learning) 55.6

B2 (w/ Multi-granularity w/o Contrastive learning) 57.9

B3 (w/ Single-granularity w/ Traditional contrastive learning) 56.6

B4 (w/ Multi-granularity w/ Traditional contrastive learning) 58.4

B5 (w/ Single-granularity w/ MAC-Loss) 59.2

B6 (w/ Multi-granularity w/ MAC-Loss w/o Anchor graph) 60.5

B7 (Ours) 63.3
Learning) with accuracy of 63.3% outperforms all baselines, losses is wuseful for learning the multi-granularity
and significantly improves by 2.8%, 4.9%, and 7.7% over B6, representations.

B4, and B1, respectively. This illustrates that MAC-Learning
with the multi-granularity strategy, MAC-Loss, and Anchor
Graph is superior to the supervised baselines, the tradi-
tional contrastive learning baselines, and the MAC-Loss
without anchor graph baseline.

4.6 Diagnostic Studies
4.6.1 Effect of Different-Granularity Contrastive Losses

To investigate the effect of different-granularity losses, we
conduct the diagnostic studies to test the effect of the inter-
and intra-granularity contrastive representation learning.
Specifically, we evaluate the recognition performance of
MAC-Learning with local-context, global-local, context-
global, global-global, local-local, and context-context con-
trastive losses on NTU RGB+D with 5% and 20% labeled
data, as shown in Table 5. Here, we set Al (only uses
global-global contrastive loss), A2 (only uses local-local con-
trastive loss), A3 (only uses context-context contrastive loss)
baselines in intra-granularity contrastive representation
learning, A4 (only uses global-local contrastive loss), A5 (only
uses global-context contrastive loss), and A6 (uses local-con-
text granularity representations) baselines in inter-granularity
contrastive learning. MAC-Loss (uses both inter- and intra-
granularity contrastive losses) significantly improves the
recognition accuracy compared with all baselines. The recog-
nition accuracy achieved by either inter-granularity contras-
tive representation learning or intra-granularity contrastive
representation learning is insignificant. This proves that
MAC-Loss with both inter- and intra-granularity contrastive

4.6.2 Effect of the Top-r Closest Anchors

In Anchor Graph, parameter r denotes the top-r closest
anchors influences the calculation of the anchor adjacent
matrix and sample adjacent matrix, which affects the recog-
nition performance of MAC-Learning to some extent. Thus,
we conduct the diagnostic studies to investigate how r
affects the final recognition performance. Specifically, based
on the number of anchors, we empirically set 7€
{4,5,6,7,8,9,10,15,20,25} and re€ {1,2,3,4,5,6,7,8} to
implement MAC-Learning and tune this parameter on NTU
RGB+D and NW-UCLA with 5% labeled data. Fig. 9 shows
the recognition accuracy obtained by MAC-Learning with
varying r on NTU RGB+D and NW-UCLA, respectively.
We can see that: 1) The best performance is achieved when
r=6 and r =4 on NTU RGB+D and NW-UCLA respec-
tively. 2) The larger or smaller values affect the performance
to some extent. Thus, we set r = 6 and r = 4 in default on
NTU RGB+D and NW-UCLA, respectively.

4.6.3 Effect of Different Fusion Mechanisms

In this work, we adopt the summing operation to fuse
multi-granularity features into a single feature. Specifically,
local, context, and global features are jointly learned with
the same dimension, and then fused into a single feature by
the summing operation. To explore the effect of different
fusion mechanisms, we also conduct experiments to com-
pare the summing fusion and concatenating fusion. Here, in

TABLE 5
Accuracies (%) Obtained by MAC-Learning With Different-Granularity Contrastive Losses on NTU RGB+D
with 5%, 20% Labeled Data of Training Set

Baseline Inter-granularity Intra-granularity 5% 20%
contrastive loss contrastive loss

G-L G-C L-C GG L-L C-C CS Ccv CS (@Y
Al v 59.2 66.1 74.5 80.4
A2 v 58.7 64.3 74.2 80.3
A3 v 59.5 66.3 75.0 80.4
A4 v 59.1 66.0 74.3 80.1
A5 v 58.9 65.7 73.8 80.7
A6 v 59.1 65.6 73.9 79.8
MAC-Loss (Ours) v/ v v v v v 63.3 70.4 78.4 84.6

G-L, G-C, L-C, G-G, L-L, and C-C indicate the global-local, global-context, local-context, global-global, local-local, and context-context contrastive losses,

respectively.
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Fig. 11. The comparison of different fusion mechanisms (i.e., summing,
and concatenating) on NTU RGB+D (CS) and NW-UCLA with 5%
labeled data.

the concatenating fusion, the local, context, and global fea-
tures are concatenated into a single feature.

The comparison results of summing and concatenating
fusion on NTU RGB+D (CS) and NW-UCLA with 5%
labeled data are shown in Fig. 11. Either on NTU RGB+D or
NW-UCLA, the recognition performance of MAC-Learning
via summing fusion and concatenating fusion is compara-
ble, which illustrates that MAC-Learning is relatively robust
with different fusion mechanisms.

4.6.4 Effect of the View-Invariant Augmentation

Several previous works [23], [64], [79] have validated that
view-invariant structures can help improving the recogni-
tion performance. To verify whether adding a view-invari-
ant structure into the proposed MAC-Learning can further
improve the recognition performance, and also show the
flexible extension of the proposed method, we refer to [33],
[79] to apply the view-invariant augmentation to MAC-
Learning. Specifically, we adopt a rotation transformation
of the random angle along the x, y, and z axes to realize the
view-invariant augmentation, which is implemented to
rotate the input skeleton data before feeding into the GCNs
and Context GCNs.

We compare the recognition accuracies of MAC-Learn-
ing with/without view-invariant augmentation on NTU
RGB+D (CS) and NW-UCLA with 5% labeled data, as

67 66.5 66.6
66
—~ 65
X
~ 64
> 63.3 63.0
C 63
>
Q
< 62
61
60

NTU RGB+D
M W/O0 view-invariant

NW-UCLA

B W view-invariant

Fig. 12. Recognition accuracies (%) of MAC-Learning with/without view-
invariant augmentation on NTU RGB+D (CS) and NW-UCLA with 5%
labeled data.
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TABLE 6
The Comparison of Different Methods in Terms of #Parameters
(M) and FLOPs (G)

Methods #Params (M) FLOPs (G)
SGN [82] 0.7 15.4
Shift-GCN [83] 2.8 19.2
ST-GCN [13] 3.1 16.7
MS-G3D [31] 6.4 98.0
2s-AGCN [29] 6.9 374
AS-GCN [14] 7.2 355
2s-AAGCN [35] 7.6 39.1
DGNN [80] 8.1 71.1
DeCoup-GCN [81] 13.7 102.3
MAC-Learning (Ours) 8.1 40.7

The abbreviations “M” and “G” denote Mega and Giga, respectively.

shown in Fig. 12. We can see that, while using view-invari-
ant augmentation, the recognition accuracies of MAC-
Learning are improved by 3.2% and 3.6% on NTU RGB+D
and NW-UCLA, respectively. Therefore, it is flexible to
equip the view-invariant augmentation into MAC-Learning
for further improving the recognition performance.

4.6.5 Complexity Analysis: Parameters and FLOPs

To provide more details of the complexity analysis of the
proposed MAC-Learning, we have calculated the total num-
ber of parameters (#Params) and the FLOPs, and provided
the complexity comparison among different GCN-based
methods in Table 6. Although there are six GCNs in our
framework, the parameters of GCN G(-) and GCN Gs(-)
are shared, as well as the parameters of GCN Gj5(-) and
GCN Gg(-) are shared in the implementation process. The
main parameters of MAC-Learning exist in these six GCNs.
Each (Context) GCN contains five blocks, and there are 20
blocks in MAC-Learning framework, which are equal to 20
blocks in 2s-AAGCN [35]. Thus, the number of parameters
and FLOPs in MAC-Learning and 2s-AAGCN are compara-
ble. In addition, compared with different methods (using
GCN/GNN as the main backbone) in terms of the number
of parameters and FLOPs, we can see that MAC-Learning
costs less FLOPs than some popular models, e.g.,
DGNN [80] and DeCoup-GCN [81]. This illustrates that
MAC-Learning is acceptable in terms of computational
complexity.

4.7 Extensive Experiment
To further demonstrate the effectiveness of MAC-Learning
on the larger-scale dataset, we conduct the comparative
experiment on a more challenging Kinetics-skeleton dataset.
Specifically, Kinetics dataset [84] includes 300,000 raw video
clips of 400 classes without skeletal data, collected from
YouTube videos. Following [13], we obtain the kinetics-skel-
eton data from the kinetics dataset by using the publicly
available OpenPose toolbox [21] to estimate 18 human skel-
eton joints of each person. And then, we adopt the top-1
and top-5 evaluation criteria, where the training and testing
sets contain 240,000, and 20,000 samples, respectively.

The comparison of recognition accuracies obtained by
different methods on the Kinetics-skeleton dataset is shown
in Table 7. It is noted that all comparative methods adopt
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TABLE 7
The Comparison Among Recognition Accuracies (%) Obtained
by Different Methods on the Kinetics-Skeleton Dataset in the
Fully-Supervised Manner

Method Top-1 (%) Top-5 (%)
Deep LSTM [41] 16.4 35.3
TCN [15] 20.3 40.0
ST-GCN [13] 30.7 52.8
AS-GCN [14] 34.8 56.5
2s-AGCN [29] 36.1 58.7
DGNN [80] 36.9 59.6
GCN-NAS [85] 37.1 60.1
MAC-Learning (Ours) 37.9 60.6

the fully-supervised learning manner. For fair comparison,
the proposed MAC-Learning also adopts the fully-super-
vised learning manner by using the 100% labeled data of
training set. In Table 7, we can see that MAC-Learning
achieves the competitive performance compared with the
other methods. Specifically, the recognition performance
achieved by MAC-Learning and GCN-NAS [85] are
comparable.

5 CONCLUSION

In this work, we proposed a novel Multi-granularity
Anchor-Contrastive Representation Learning (MAC-Learn-
ing) framework to address the problem of semi-supervised
skeleton-based action recognition by learning multi-granu-
larity action features. Specifically, MAC-Learning conducts
inter- and intra-granularity contrastive pretext tasks on the
learnable and structural-link skeletons among local, context,
and global granularities. Overall, there are two main
insights in the proposed MAC-Learning. First, MAC-Learn-
ing creatively captures the high-confidence soft-positive/
negative pairs in contrastive learning to avoid the distur-
bance of ambiguous pairs from noise and outlier samples.
Second, MAC-Learning leverages Multi-granularity
Anchor-Contrastive Loss (MAC-Loss) containing the inter-
and intra-granularity contrastive losses to measure the
agreement/disagreement between the soft-positive/nega-
tive pairs on the learnable and structural-link skeletons
among three types of granularities. Extensive experimental
results on NTU RGB+D and Northwestern-UCLA datasets
show the promising performance of MAC-Learning in
terms of semi-supervised skeleton-based action recognition
task. In the future, due to the flexibility of MAC-Loss, it can
be regarded as a plug-and-play module, and then be
pushed into other semi-supervised /unsupervised represen-
tation learning frameworks.
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