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Host—Parasite: Graph LSTM-1n-LSTM for Group
Activity Recognition

Xiangbo Shu™, Liyan Zhang, Yunlian Sun

Abstract—This article aims to tackle the problem of group
activity recognition in the multiple-person scene. To model the
group activity with multiple persons, most long short-term
memory (LSTM)-based methods first learn the person-level
action representations by several LSTMs and then integrate
all the person-level action representations into the following
LSTM to learn the group-level activity representation. This type
of solution is a two-stage strategy, which neglects the “host—
parasite” relationship between the group-level activity (‘“host”)
and person-level actions (‘“parasite”) in spatiotemporal space.
To this end, we propose a novel graph LSTM-in-LSTM (GLIL)
for group activity recognition by modeling the person-level
actions and the group-level activity simultaneously. GLIL is a
“host—parasite” architecture, which can be seen as several person
LSTMs (P-LSTMs) in the local view or a graph LSTM (G-LSTM)
in the global view. Specifically, P-LSTMs model the person-level
actions based on the interactions among persons. Meanwhile,
G-LSTM models the group-level activity, where the person-level
motion information in multiple P-LSTMs is selectively integrated
and stored into G-LSTM based on their contributions to the
inference of the group activity class. Furthermore, to use the
person-level temporal features instead of the person-level static
features as the input of GLIL, we introduce a residual LSTM with
the residual connection to learn the person-level residual features,
consisting of temporal features and static features. Experimental
results on two public data sets illustrate the effectiveness of the
proposed GLIL compared with state-of-the-art methods.

Index Terms—Deep learning, graph LSTM (G-LSTM), group
activity recognition, long short-term memory (LSTM).

I. INTRODUCTION
INGLE-PERSON action recognition, aiming to
Sunderstand the action performed by a single person
(e.g., running and jumping), has achieved great progress for
the past decades [1]-[4]. Compared with the single-person
action, a group/collective activity usually indicates a more
complex activity scene involving at least two persons’ actions,

Manuscript received July 18, 2019; revised December 23, 2019; accepted
March 2, 2020. Date of publication April 2, 2020; date of current version
February 4, 2021. This work was supported in part by the National Key
Research and Development Program of China under Grant 2016YFB1001001,
in part by the National Natural Science Foundation of China under Grant
61732007, Grant 61932020, Grant 61702265, and Grant 61772268, and in part
by the National Natural Science Foundation of Jiangsu Province under Grant
BK20170856 and Grant BK20190065. (Corresponding author: Liyan Zhang.)

Xiangbo Shu, Yunlian Sun, and Jinhui Tang are with the School of Computer
Science and Engineering, Nanjing University of Science and Technology, Nan-
jing 210094, China (e-mail: shuxb@njust.edu.cn; yunlian.sun@njust.edu.cn;
jinhuitang @njust.edu.cn).

Liyan Zhang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
(e-mail: zhangliyan@nuaa.edu.cn).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.2978942

, and Jinhui Tang™, Senior Member, IEEE

e.g., people are talking and people are queuing. Since a group
activity contains several person-level actions from two or
more persons, group activity recognition becomes more
challenging than single-person action recognition [5]—[8].

In the early stages, researchers used various graphical
models to tackle the problem of group activity recognition,
e.g., hierarchical graphical models [9], AND—OR graphs [10],
dynamic Bayesian networks [11], and classical neural net-
works [12]. Recently, witnessing the success of recurrent
neural network (RNN) [13] and long short-term mem-
ory (LSTM) [14] in modeling the sequence data, researchers
attempted to use RNN to address the problem of the group
activity recognition [15]-[18]. A common two-stage solution
is that it first learns person-level action representation by
several LSTMs and then integrates all the person-level action
representations to learn the group-level activity representation
by another LSTM. Such a two-stage solution achieves a
significant improvement of the recognition accuracy compared
with traditional methods on group activity recognition.

However, the abovementioned two-stage solution ignores
the important ‘“host—parasite” relationship between the
group-level activity (“host”) and the person-level actions
(“parasite”). Obviously, in an activity scene within multiple
persons, the person-level actions and group-level activity
are co-occurrence over time. Thus, the persons-level actions
of the individuals and group-level activity of the scene
should be simultaneously modeled by multiple RNNs. In the
local view, most of the person-level actions participate in
the group-level activity and decide the class of group-level
activity. In the global view, a group-level activity involves
several person-level actions and binds several person-level
actions to a specific activity. For example, in a “walking”
activity, most persons, who are walking together, decide the
class “walking” of this activity. In turn, the “walking” activity
involves most of the “walking” persons. We can see that the
group-level activity and person-level actions in an activity
scene constitute a host—parasite relationship, which cannot be
simulated by the two-stage solution.

Therefore, considering the host—parasite relationship in
the group activity, we propose a novel graph LSTM-in-
LSTM (GLIL) to simultaneously model the person-level
actions and the group-level activity in the spatiotemporal
space, as shown in Fig. 1. GLIL becomes a graph LSTM
(G-LSTM) in the global view and also becomes several person
LSTMs (P-LSTMs)with the interactions in the local view.
Specifically, P-LSTMs target to model the person-level actions
with interaction among persons; meanwhile, G-LSTM targets
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Fig. 1. Idea of the proposed GLIL for modeling a group activity. GLIL
becomes P-LSTMs in the local view that models the person-level actions
with the interactions among persons and becomes a G-LSTM in the global
view that models the group-level activity at the same time. The G-LSTM
and P-LSTMs constitute a host—parasite architecture in spatiotemporal space,
which simulates the “host—parasite” relationship between the group-level
activity (“host”) and person-level actions (“parasite”).

Graph LSTM unit

to model the group-level activity. G-LSTM and P-LSTMs con-
stitute a host—parasite architecture of GLIL in the spatiotem-
poral space, which reveals the ‘“host—parasite” relationship
between the group-level activity and person-level actions.

The training framework of GLIL is shown in Fig. 2,

which stacks a pretrained CNN, a residual LSTM (R-LSTM),
the GLIL, and a softmax layer in a bottom—up way. First,
we employ a pretrained CNN to extract the static features
(i.e., CNN features) of each person on the person’s bounding
boxes. Second, we extend an R-LSTM to learn the person-
level residual features of each person from their static features.
Third, followed by R-LSTM, P-LSTM in GLIL learns and
updates the person-level motion state of one person under
the interaction with other persons, while a G-LSTM in GLIL
selectively aggregates the person-level motion information
from P-LSTM into a new group-level memory cell over time.
Finally, we feed the group-level activity representation output
from GLIL into the softmax layer at each time step and then
average the outputs of all the softmax classifiers to infer the
class of group activity. This means to perform an average
classification score on all the frames over time.

Overall, the main contributions of this article are summa-

rized as follows.

1) To address the problem of group activity recognition,
we propose a novel GLIL framework by simultaneously
modeling the person-level actions and group-level activ-
ity, where the architecture of GLIL simulates the “host—
parasite” relationship between the group-level activity
and the person-level actions.

2) We design several P-LSTMs to learn the person-
level action representations by considering the inter-
actions among persons under a new interaction gate
and design a G-LSTM to learn the group-level activity
representations.

3) We conduct experiments on two public data sets (Volley-
ball data set (VD) [15] and Collective Activity data set
(CAD) [6]) to illustrate the effectiveness of the proposed
GLIL compared with the state-of-the-art methods.

The rest of this article is organized as follows. Section II
reviews some works related to RNN-based action recognition
and group activity recognition. Section III introduces some
preliminary works. Section IV details the proposed framework.
Experiments are conducted in Section V, followed by the
conclusions in Section VII.

II. RELATED WORK

In this section, we briefly review some works related to the
RNN-based action recognition and group activity recognition.

A. RNN-Based Action Recognition

Action recognition aims to recognize human action in
videos [5], [19]-[21]. In the early stages, various spatiotem-
poral feature learning and feature extraction methods, e.g.,
histogram of oriented gradients (HOG) [22], histogram of
optical flow (HOF) [23], dense trajectories [20], and 3-D
SIFT [24], were proposed to represent the human action in
videos.

For the last few years, RNNs [13] and LSTM [14] have
made great progress in action recognition, due to the powerful
ability for handling sequential data with variable length [15],
[19], [25]-[28]. For example, Donahue et al. [19] proposed
a long-term recurrent convolutional network for action
recognition by stacking the CNN layer and RNN/LSTM
layer in a bottom—up way. Subsequently, some works
utilized RNN/LSTM to model the spatial relationship among
data when modeling human action. For example, Wang
and Wang er al. [29] proposed a two-stream architecture,
including a temporal RNN and a spatial RNN to model
temporal motions of individuals over time and spatial relation
among skeleton joints.

In the meantime, kinds of RNN architectures were built to
model human action based on various ideas [25], [30]-[32].
For example, to capture the change degree of motion infor-
mation between two consecutive frames, Veeriah et al. [27]
designed a derivative of the motion state between the gates in
LSTM. Moreover, Shahroudy et al. [30] and Liu et al. [28]
proposed to divide the memory cell in LSTM into multiple
subcells corresponding to different human skeleton parts,
which models the motion of skeleton parts over time.

B. Group Activity Recognition

Group activity recognition aims to automatically understand
an activity performed by at least two persons, which has
been developed into an attractive topic [8], [9], [33]-[35].
In the early stages, researchers designed various handcrafted
features to represent person-level actions or group-level activ-
ities [6], [8], [36], [37]. Since deep learning has achieved
great progress in image/video classification tasks [38]-[40],
many deep learning-based activity recognition methods have
been proposed in recent years [15], [17], [33], [41]. As one
of the most representative works, a hierarchical LSTM model
in [15] is proposed to first utilize several LSTMs to learn
the person-level action representations over time and then
integrate the person-level action representations of all persons
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Framework of the proposed GLIL for group activity recognition. For each frame, we first feed the CNN features of each person to an R-LSTM

unit. Then, R-LSTM learns the person-level residual features of each person, which are treated as the inputs of the following GLIL. For a GLTL unit, one
P-LSTM unit learns and updates the person-level motion state with the interactions among persons, while one G-LSTM unit selectively aggregates and stores
the person-level motion information from P-LSTMs into a new group-level memory cell. Finally, the group-level activity representation output from the
group-level memory cell at each time step is input to the softmax layer, and the averaged softmax score at all time steps is the prediction probability vector

of group activity class.

into the following LSTM to learn the group-level activity
representation over time.

Subsequently, some deep learning-based activity recognition
methods assumed that persons are not independent in the
group activity and considered modeling interactions among
persons in a group activity [16], [18], [31], [42]. For exam-
ple, Wang et al. [18] extended an RNN-based hierarchical
framework to learn three-level motions in a step-by-step
way, i.e., person-level actions, person—person interactions, and
group-level activity corresponding to the individuals, multiple
persons, and the activity scene. Considering the different
contributions of individuals in a group activity, Tang et al. [31]
proposed a coherence-constrained G-LSTM with spatiotempo-
ral context coherence constraint and a global context coher-
ence to effectively recognize group activity by modeling the
relevant motions of individuals while suppressing the irrel-
evant motions. However, there methods model the person-
level action and group-level activity in a step-by-step way,
which ignores the fact that person-level action and group-level
activity happen at the same time.

Therefore, some works considered modeling the person-
level action and group-level activity simultaneously [33], [43],
[44]. For example, Deng et al. [43] regarded all persons
and the whole activity scene as the nodes of a graph and
further exploited multiple RNNs to model the person-level
action of persons and the group-level activity of the scene in
a graph model. This method regards the group-level activity
as a graph node, which is equal to the person-level action.
In fact, in an activity scene, the person-level action and the
group-level activity are not equivalent, while the truth is that
the person-level actions participate in the group-level activity.
A reasonable assumption is that the group-level activity and
the person-level actions constitute a host—parasite relationship,
as discussed in Section I. Therefore, we consider designing
a new architecture of LSTM to simulate such host—parasite
relationship for modeling group activity well.

Recently, Wu et al. [45] and Azar et al. [46] also explored
the activity recognition and achieved the state-of-the-art per-
formance. The difference between the proposed GLIL and
these two recent methods is detailed in the following.
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1) For the idea, both of Wu et al. [45] and Azar et al. [46]
considered aggregating all predictions made at the level
of single persons into the prediction made at the level of
the whole group. GLIL directly outputs the prediction
made at the level of the whole group by aggregating
the single-person memories instead of the single-person
predictions.

2) For the model formulation, the previous models pro-
posed by Azar et al. [46] and Wu et al. [45] are based on
the convolution network. These models only consider the
spatial relationships among persons in the spatial space.
Different from them, GLIL is originally based on both of
the LSTM and graph structure, where the graph structure
considers the spatiotemporal relation among persons in
both of the temporal and spatial spaces.

3) For the architecture design, convolutional relational
machine proposed by Azar et al. [46] can be seen as a
new convolutional neural network, and Wu et al. [45]
constructed actor relation graphs that implement on
the existing graph convolutional network. Different
from them, GLIL designs a bioinspired host—parasite
G-LSTM, which can be seen as a new LSTM
architecture.

Since generative adversarial network (GAN) has become
beneficial in generating the data/feature and learning the loss
function at the same time, Gammulle et al. [47] first utilized
GAN to learn the “action code” for the group activity, which is
the same as to the ground-truth label. Even so, Azar et al. [46]
employed LSTM as the core module to learn the temporal
action representation over time. Compared with LSTM, GLIL
is a relatively flexible and superior architecture, which can also
be embedded into the GAN framework.

III. PRELIMINARY

This section introduces some preliminary works, such as
LSTM and graph construction, which can provide basic knowl-
edge and background.

A. Long Short-Term Memory

Given a video clip {x'|t = 1,..., T} with T frames, where
X, is the static feature (such as CNN feature [48]) of the rth
frame, we use the standard LSTM [14] to learn a sequence
of hidden states {h'|t = 1,..., T} to describe the dynamic
of this video clip. The standard LSTM mainly consists of an
input gate, forget gate, output gate, input modulation gate, and
memory cell state, and one common LSTM unit at time step
t can be repressed as follows:

i =0 (Wi -x' + Wi, -h'™' +b,); (1
ft—U(fo-Xt+th'ht71+bf)§ (2)
o =0(W,, -x'+ Wy h'"' +b,); 3)
g = ¢(Wee - X' + W - b 4 by); )
d=focd+iog; )
h' =o' ©¢(c), (6)

where i', f', o', g’, and ¢’ are the input gate, forget gate,
output gate, input modulation gate, and memory cell state,

—gS gt

Fig. 3.
persons.

Toy example of graph construction for one activity within three

respectively; o (-) is a sigmoid function; © denotes element-
wise product, ¢(-) is a hyperbolic tangent tanh(-); W,, and
W, are weight matrices; and b, is bias vector. Specifically,
the input gate i’ controls the contributions of the newly arrived
input data at time step ¢ for updating the memory cell, while
the forget gate f’ determines how much the contents of the
previous state ¢/~ contribute to deriving the current state c’.
The output gate o' learns how the output of the LSTM unit
at time step ¢ should be derived from the current state of the
memory cell ¢,. More details can be found in [14].

B. Graph Construction

This article aims to understand the complex group activity
and recognizing different group activities by considering the
participating degree. For a group activity, each video frame
contains multiple-persons’ motion information, which is inter-
related in both the spatial space and temporal space. In this
article, we consider constructing a graph to explore such
relations among persons’ motion. Specifically, the nodes of
the graph can represent the state of data, and the edges can
capture the spatiotemporal interactions among nodes.

Specifically, given a video clip with 7" frames describing
a group activity within p persons, we construct a relational
graph G, = {V, 5, €T} for the rth frame by connecting a
set of graph nodes {vl|ls = 1,2,...,p,and t = 1,2,..., T}
with the graph edges £5 and £7 in the spatial space and the
temporal space, respectively. Here, v denotes the feature of
the sth person’s motion at time step . For each node v!, there
are two temporal edges connecting to the previous node v!~!
and the subsequent node v'*! in temporal space and p — 1
edges connecting to its neighboring nodes {”3; }j,eq(s) in spatial
space, where Q(s) = {1,2,...,s — 1,s + 1,..., p}. Fig. 3
shows a toy example of graph construction for one activity
within three persons.

IV. PROPOSED FRAMEWORK

The framework of GLIL for modeling group activity is
shown in Fig. 2, which stacks a pretrained CNN, a new
R-LSTM, the GLIL (P-LSTMs or G-LSTM), and a softmax
layer in a bottom—top way. These components will be intro-
duced in this section.

A. Residual LSTM

For a video clip describing a group activity within p
persons, we first employ a pretrained CNN [49] to extract the
person-level static features (i.e., CNN features) of each person
on person bounding box at each time step, denoted by {x!}7

=1
where s = 1,2,..., p. Subsequently, for the sth person,
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Fig. 4. Host—parasite architecture of the proposed GLIL. In the local view, GLIL becomes P-LSTMs that model the person-level motions by the neighboring
interaction under an interaction gate. In the global view, GLIL becomes a G-LSTM that models group-level motion by integrating all person-level memory
cells under a role gate. Such role gate checks the importance of one person-level motion for inferring the class of group-level activity at each time step.
(a) P-LSTM (parasite architecture) in GLIL. (b) G-LSTM (host architecture) in GLIL.

we learn the person-level temporal features {X!}"_, over time
by an LSTM with the residual connection, called R-LSTM
in this article. Here, witnessing the success of the deep
residual network [50], we add a residual connection across
the input and the output of LSTM [51], [52]. Such residual
connection can provide better flexibility to deal with the
gradient vanishing or exploding in the learning process [50],
[53]. R-LSTM combines the person-level static features
{x/}T_, and the person-level temporal features {X.}’_, into the
person-level residual features {d!}’_;, namely d’ = x! + X/,
s = 1,2,..., p. Finally, the obtained person-level residual
features {d [Tzl can be seen as the node v} in G;, which is
fed into the proposed GLIL.

B. Parasite Architecture of GLIL

Based on the constructed graph G,, we build the archi-
tecture of GLIL, as shown in Fig. 4. Here, GLIL becomes
several P-LSTMs in the local view, where the architecture
of one P-LSTM is shown in Fig. 4(a). In the global view,
GLIL becomes a G-LSTM, as shown in Fig. 4(b), where
one P-LSTM acts as a graph node. G-LSTM and P-LSTMs
constitute a “host—parasite” architecture. In Fig. 4(b), the sth
P-LSTM has an input gate i, forget gate f!, output gate o, and
the neighboring forget gates f}y at time step 7. These gates are
decided by the input feature d! (output from the R-LSTM)
at the current time step, a person-level motion state h’~! at
time step (¢t — 1), and a neighboring motion state Bg—‘ from its
spatial neighbors at time step (r — 1), respectively. Formally,
the sth P-LSTM at time step ¢ is formulated as follows:

il =0 (Wid, +Uh!"" +Vih™" +b}) (7)

f{ = o (W/d +U/h" + V/h{™" +b]) @®)
- Ia S pt-! T ht—1 f ;

fj, = ”(fods +Uh ™ +Vih + bjy)’ Js € Q) )
o = o (Wid; + U™ + V7h{™" + 1Y) (10)

where W7, U, and V} are the weight matrices, and b} is the

bias vector.

1) Person-Level Action Representation: The output of P-
LSTM at time step ¢ is a person-level motion state h! of the
sth person (i.e., the person-level action representation h’ of the
sth person at time step ¢), which can be computed as follows:

g = ¢p(Wid. + Ush!™' + Veh! ™! + b?) (11)

¢ =iog+fiod'+ > f,od (12
Js€Q(s)

h' =o' © go(c;) (13)

where ¢} is the person-level memory cell at time step r.
Equation (7)-(13) represent the basic model of P-LSTM.
In the following, we will introduce some new components
in P-LSTM compared with the conventional LSTM.

2) Neighboring Motion State: It is noted that the neighbor-
ing motion state Bg—‘ in (7)-(13) is averaged by the persons-
level motion states of all neighboring persons of the sth person
as follows:

e t wi—1
hl = Z b

Js€Q(s)

(14)

In (14), r; denotes an interaction gate of the j;th neighboring
person corresponding to the sth person.

3) Interaction Gate: As mentioned earlier, two persons
usually interact over time in a group activity. Specifically, for
the sth person’s motion at time step ¢, different neighboring
persons interact with different degrees over time. In most
cases, if two persons are standing closely, and performing
similar motions, they are intensively interacting. Therefore,
we can simultaneously use the feature similarity and loca-
tion similarity of two persons to measure their interaction.
Specifically, we use the central position of person’s bounding
box to denote the person’s location. Let aj and a’; denote
the locations of the sth person and her/his jsth neighboring
person, respectively, and we design an interaction gate r}y to
quantify the interaction between two persons at time step ¢ as
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follows:
r' = J-SimFeature' (s, j;)+ (1—4)-SimLocation (s, j,);
SimFeature’ (s, j;)
_ 12
(| ong )
—1 1112 ’
Elmn@fV(Hh§ —h’, ||)
SimLocation’ (s, j,)

2
([fas —at |I")
- s (15)
EZLeQQfV(Ha?‘aL")
where X'(-) = 1/exp(+), and 4 is a coefficient to balance two
terms.

C. Host Architecture of GLIL

In Fig. 4(b), G-LSTM resembles a host that fosters several
P-LSTMs. In G-LSTM, the person-level motion information
in all person-level memory cells ¢! of P-LSTM is integrated
into a new graph-level memory cell ¢’ of G-LSTM. The
group-level memory cell combines all person-level motions
into the group-level motion. Although all person-level motion
information contributes to the inference of the group activity
class, their contributions are different. Thus, we hope the
group-level memory cell can selectively integrate and store the
useful person-level motion information when cooking group-
level motion. Similar to a previous work [42], we can set a
gate to control what types of person-level motion information
would enter or leave the group-level memory cell over time.
Here, we design a new role gate 7! at time step ¢ to allow
the person-level motion of the sth person to enter or level
group-level memory cell.

1) Role Gate: To design the role gate 7!, we need to answer
a question: what type of person-level motion is useful to infer
the class of group activity? Obviously, if we only use one
person-level action representation at the previous time step
to accurately infer the class of group activity, the person-
level motion at this time step is useful and to be allowed
into the group-level memory cell. Therefore, we measure
the consistency of the label inference of group-level activity
representation and person-level action representation at the
previous time step. Formally, the role gate z! at time step
t is defined as follows:

nl=c(Wiq '+ Ulq/ " +b]), sef{l,2,....p} (16)

where q'~! and q'~! denote two predicted label vectors of
the activity class, which are obtained via group-level activ-
ity representation h’~! [defined in (22)] and person-level
action representation h’~!, respectively. Specifically, if we

let L denote the class number of group activity, q'~! =

t—1 t—1

lg, .., q ,...,q’L_I]T and QTI = [Qstrl""’qﬁ 2ot
‘1.§L_I]T are obtained as follows:
- exp(z ")
49 =< n an
>isiexp(z )
- exp(z!!
q; ' = ) (%)

>y exp(e)

- -1 —1 —1 - -
where 27" = [2{7, ...,z ... 21 and 271 = [z,

e,z oo, 21T are the confidence score vectors of
group-level action representation h’~! and person-level action
representation h!~! at time step (+ — 1), respectively, that is

27 = o(Wh'™! +b) (19)
7 = (W' +b%), se{l,2,....p}. (20
2) Group-Level Memory Cell: When we obtain the role

gate 7!, we selectively integrate all person-level memory

cells {c/}”_, into the group-level memory cell ¢’ via the

corresponding role gates x!, as follows:

P

r_ t t

c = E T, Oc¢y.
s=1

3) Group-Level Activity Representation: In G-LSTM, its
output at time step ¢ is the group-level activity state h' (i.e.,
group-level activity representation h’ at time step 1), that is

(22)

21

h' =o' ©¢(c)

where o' is the output gate of G-LSTM, which is defined as
follows:

P
0o = o'(z G°h! +G°n'~! + b”) (23)
s=1
where G is the weight matrix.
Finally, we compute the confidence score vector z' of the
group activity class by (19), and feed z' (t = 1,2,...,T) into
a softmax layer, that is

y' = softmax(z'), r=1,2,...,T. (24)

The outputs of all the softmax classifiers corresponding to all
frames are averaged to obtain the probability class vector of
group activity.

V. EXPERIMENTS

In the experiments, we evaluate the performance of the
proposed GLIL compared with the state-of-the-art methods on
two public data sets, i.e., CAD [6], and VD [15].

A. Data Set

Two data sets used in the experiments are described as
follows.

1) CAD [6]: Tt contains 44 video clips with five types of

activities, i.e., “crossing,” “waiting,” “queuing,” “walk-
ing,” and “talking.” Similar to [36] and [58], we select
two-thirds of the video clips from each activity class
to form the training set, and the rest are used for
testing. The person bounding boxes (tracklets) used in
the experiments are provided in [9]. Since the number
of persons is varying in a range [1, 12], we randomly
select five effective persons for each frame and regard
them as a group activity.! Here, if the number of
persons in one frame is less than five or some humans

9

When the proposed method handles the activity recognition task in crowded
environments, we set a fixed number of persons that can fittingly represent
the activity and choose persons who emerge at most of the time steps.
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dynamically exiting the scene/group at one time step,
we take a full-zero matrix as a new person bounding
box. Following the experimental setting in [17], [18],
and [46], we merge class “walking” and “crossing” as
“moving” due to the imbalanced test set.

2) VD [15]: It consists of 55 videos within 4830 annotated
frames. This data set provides the person bounding box
of each person in each frame, and a group activity class
for each video clip, e.g., “left pass,” “right pass,” “left
set,” “right set,” “left spike,” “right spike,” “left win,”
or “right win.” Following the setting in [15], two-thirds
of the annotated frames are selected for training, while
the rest ones for testing. In this data set, each group
activity contains two subgroups corresponding to two
teams. Similar to [15] and [42], all person-level residual
features in one subgroup are first input to a GLIL for
learning the representations of subgroup-level activity.
Then, we concatenate the activity representations of two
subgroups as the representation of the whole group-level
activity at each time step.

B. Experimental Setting

We use Torch toolbox and Tensorflow [59] as the deep
learning platform to conduct the experiments. Following
in [60], we employ the VGGI16 pretrained on ImageNet to
extract the person-level CNN features (on the FC-15 layer of
VGG16) based on the person bounding box at each time step.
In the VD and CAD data sets, we consider ten frames from
each video without any resampling; namely, the length T
of time steps for a video clip is set to 10. We also use
the other recent networks to extract the person-level CNN
features for fair comparison with prior methods. In the
configuration of R-LSTM, the number of input nodes and
the number of output nodes are set to 4096 for the residual
connection. The number of output nodes in P-LSTM and
the number of nodes in G-LSTM are set to 1024. We use
the Adam algorithm [61] as the optimizer. The learning rate,
momentum, and decay rate are set to 0.5 x 1073, 0.9, and
0.95, respectively. For the network initialization, such
as traditional deep neural networks, we use the random
normal distribution (mean = 0 and variance = 0.01) to
initialize the parameters of GLIL. We select the parameter 4
in (15) from the values of {0.1, 0.3, 0.5, 0.7, 0.9}. Through the
experimental validation, we ultimately set lambda = 0.7 as the
optimal value. We use the mean per-class accuracy (MPCA)
as the performance metric.

C. Time Complexity

Let d denote the feature dimension of the person-level CNN
feature. In R-LSTM, the number of the output nodes is also
set d for the skip connection. For the forward propagation of
R-LSTM, the time complexity mainly comes from the matrix
computation in input gate, forget gate, output gate, and input
modulation gate, namely O(ResidualLSTM) = O (4 pd*Tn),
where p, T, and N are the number of persons, the number of
time steps, and the number of video clips, respectively. Since
we use backpropagation through time (BPTT) to minimize the
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loss function, the time complexity of backpropagation is equal
to that of forward propagation. Thus, the time complexity
of R-LSTM is O(ResidualLSTM) = 20(4pd*Tn) in
total. Likewise, the time complexity of P-LSTM in input
gate, forget gate, output gate, input modulation gate,
and neighboring forget gates is O(PersonLSTM) =
2(0@pd?*Tn) + (p — DO(pd>Tn)). Let m denote the
number of output nodes of P-LSTM and the number of
output nodes of G-LSTM, and the time complexity of
G-LSTM in role gate and output gate is O(GraphLSTM) =
2(pOQRLmMTn) + (p + YO(LmTn) + O((p + 1)m*Tn)),
where L denotes the number of the activity classes. Thus,
the time complexity of the proposed GLIL is O(GLIL) =
2EQO@pd*Tn) + (p — 1)O(pd*Tn) + pOQRLmTn))
+2E((p + HO(LmTn) + O((p + 1)m*Tn)), where E
denotes the number of epochs. In the experiments, the training
of GLIL begins to converge after about 60 and 110 epochs
on the CAD and VD data sets, respectively. Then, the time
consumption for training GLIL on CAD and VD requires
about 10 and 55 h, respectively.

D. Baselines

In the experiments, several baselines are defined to illustrate
the novelty of the proposed GLIL.

B1 One LSTM: This baseline treats all person-level actions

as a whole to directly learn the group-level activity
via an LSTM. First, multiple-person bounding boxes at
one time step are merged into a bigger bounding box.
Second, the CNN feature is extracted on this “bigger”
bounding box at each time step. Third, we use the CNN
features as inputs to train an LSTM.
Multiple LSTMs: This baseline learns the person-level
actions by multiple LSTMs. First, the CNN features of
each person are fed into an LSTM to learn the person-
level action representation. Third, all person-level action
representations at one time step are concatenated into the
group-level activity representation.

B3 Hierarchical LSTM: This baseline is a two-stage solution

in a hierarchical way. It first learns the person-level

action representations of all persons by multiple LSTMs
and then learns the group-level activity representations
by the following LSTM in a hierarchical way. The idea

of this baseline is the same as Ibrahim et al. [15].

Hierarchical R-LSTM: This baseline is a two-stage

solution in a hierarchical way. The CNN features of

each person are input to the R-LSTM, followed by

a conventional LSTM. This baseline aims to test the

contribution of R-LSTM compared with B3.

BS GLIL Without R-LSTM: This baseline throws out the
R-LSTM in the proposed GLIL. Thus, the CNN features
of each person are directly fed into GLIL, followed by
the softmax layer at each time step. This baseline aims
to illustrate the power of the GLIL network.

B2

B4

E. Results on CAD

1) Ablation Studies: We first illustrate the novelty of
the proposed GLIL by comparing it with several baselines.
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TABLE I
COMPARISON AMONG DIFFERENT METHODS ON THE CAD DATA SET

Methods Backbone moving waiting queuing talking | MPCA
Choi et al. [6] None 90 82.9 95.4 94.9 90.8
Lan et al. [35] None 92 69 76 99 84
Zhou et al. [53] None 88.5 74.0 95.0 98.0 88.9
Hajimirsadeghi et al. [54] None 87 75 92 99 88.3
Wang et al. [18] AlexNet 94.9 63.6 100 99.5 89.4
Ibrahim et al. [15] AlexNet 95.9 66.4 96.8 99.5 89.7
Li et al. [55] Inception-v3 90.8 81.4 99.2 84.6 89.0
Yan et al. [17] AlexNet 92.8 76.6 100 99.5 922
Tang et al. [56] VGG 95.7 89.9 100 97.3 92.5
Gammulle et al. [46] ResNet50 94.5 80.5 100.0 98.0 93.3
Wu et al. [44] Inception-v3 - - - - 93.7
Azar et al. [45] Inception-V3 91.7 86.3 100.0 98.91 94.2
B1: One LSTM VGG16 94.9 50.4 96.4 98.0 84.9
B2: Multiple LSTMs VGG16 95.5 49.2 97.6 98.0 85.1
B3: Hierarchical LSTM VGG16 95.5 65.3 98.0 99.5 89.6
B4: Hierarchical Residual LSTM VGG16 95.5 68.9 99.4 99.0 90.7
BS: GLIL w/o Residual LSTM VGG16 95.5 73.6 99.0 99.5 91.9
VGG16 95.5 75.6 100.0 99.0 92.5
Graph LSTM in LSTM (GLIL) ResNet50 95.5 79.7 100.0 99.5 93.7
Inception-V3 95.5 84.7 100.0 99.5 94.9
As shown in Table I, GLIL achieves the best performance
compared with all baselines. Since B3—B5 model group-level moving
activity in a hierarchical way, they perform better than both
B1 and B2. B4 outperforms B3, which illustrates that training
the stacked LSTMs in a hierarchical way benefits from the waiting
residual connection. Compared with B5, B4 with the R-LSTM
and hierarchical architecture can be learned by setting a greater
number of epochs. This ensures that B4 gains more discrimi- queuing
native power for some activity, which has few outlier persons
(noise), such as the queuing activity. However, for some activ- ki
ities within a certain number of outlier persons (noise), such as o
the waiting activity, BS with the “host—parasite” architecture
is very useful to remove these outlier persons. This is because
the host—parasite architecture of GLIL (in B5) revealing the
consistence of the group-level activity and person-level actions  Fig. 5. Confusion matrix of the proposed GLIL (VGG16 as the backbone)
can filter the outlier persons. When we further use the person- " CAD.
level residual features instead of the person-level static feature, solution) [15] and approximately 23% improvements

GLIL improves 0.68% again compared with B5. The confu-
sion matrix of GLIL on CAD is shown in Fig. 5. We can
see that “waiting” and “talking” activities are more confusing
since they are visually similar to each other.

2) Comparison With the State of the Art: We also
compare the recognition accuracy of the proposed GLIL
with several competitive methods, including nondeep
learning-based methods (Choi et al. [6], Wang et al. [18],
Lan et al. [36], Zhou et al. [54], and Antic and Ommer [63],
Kong et al [64] and deep learning methods
(Ibrahim et al. [15], Donahue et al. [19], Deng et al. [33],
Shu et al. [42], Deng et al. [43], Wu et al. [45],
Azar et al. [46], Gammulle et al. [47], Hajimirsadeghi
and Mori [55], Li and Chuah [56], and Qi et al. [60]).
The recognition accuracies obtained by these methods are
shown in Table I. GLIL achieves the best average accuracy
compared with alternatives. Specifically, GLIL improves
approximately 7% improvements compared with one of the
most representative hierarchical LSTM methods (the two-stage

compared with one classical method (releases this data
set) [6]. Not only that, GLIL also performs better than
some semantic-based methods (e.g., Li and Chuah [56],
and Qi et al. [60]) that use the person-level action label
information (as the external prior information) to learn
the network. Here, we do not use the person-level label
information to learn the GLIL model. If we set the same
backbone, the proposed GLIL is comparable to the state-of-
the-art methods (e.g., Wu et al. [45], Azar et al. [46], and
Gammulle et al. [47]). Some recognition results obtained by
GLIL are shown in Fig. 6(a).

F. Results on VD

1) Ablation Studies: The recognition accuracy of the pro-
posed GLIL compared with the baselines is shown in Table II.
GLIL achieves the best average accuracy performance on all
activity classes. Compared with B1 and B2, the two-stage solu-
tion (i.e., B3 and B4) has achieved a significant improvement
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TABLE II

COMPARISON AMONG DIFFERENT METHODS ON THE VD [15]. “LPASS,” “RPASS,” “LSET,” “RSET,” “LSPIKE,” “RSPIKE,” “LWINPOINT,” AND “RWIN-
POINT” DENOTE “LEFT PASS,” “RIGHT PASS,” “LEFT SET,” “RIGHT SET,” “LEFT SPIKE,” “RIGHT SPIKE,” “LEFT WINPOINT,” AND “RIGHT
WINPOINT,” RESPECTIVELY

Methods backbone Ipass  rpass Iset rset Ispike  rspike  Iwinpoint  rwinpoint | MPCA
Ibrahim et al. [15] AlexNet 779 81.4 84.5 68.8 89.4 85.6 88.2 87.4 829
Shu et al. [16] VGG16 - - - - - - - - 83.6
Li et al. [55] Inception-v3 | 55.8 69.1 67.3 52.1 82.1 79.2 - - 67.6
Yan et al. [17] AlexNet 85.8 88.1 90.5 80.2 922 87.9 89.2 90.8 88.1
Shu et al. [41] AlexNet 83.9 88.1 90.3 80.4 93.4 89.8 88.7 92.4 88.4
Qi et al. [59] VGG16 79 83 87 70 90 87 89 90 84.4
Tang et al. [31] AlexNet 88.1 90.0 89.9 78.1 93.9 91.3 90.2 93.1 89.3
Ibrahim et al. [61] VGG19 - - - - - - - - 89.5
Tang et al. [56] VGG16 - - - - - - - - 89.5
Bagautdinov et al. [33] Inception-v3 - - - - - - - - 89.9
Gammulle et al. [46] ResNet50 - - - - - - - - 92.4
Wu et al. [44] Inception-v3 - - - - - - - - 91.0
Azar et al. [45] Inception-v3 - - - - - - - - 93.04
B1: One LSTM VGGl6 6443 6618 76.55 6270 77.25  74.81 70.35 68.75 70.13
B2: Multiple LSTMs VGG16 64.43 7769 81.83 69.84 8843  83.43 78.00 78.13 77.72
B3: Hierarchical LSTM VGG16 80.38 8348 87.10 71.94 91.65 87.11 89.95 89.25 85.11
B4: Hierarchical Residual LSTM VGG16 83.16 8598 85.64 7274 9151 87.11 91.97 89.51 85.95
B5: GLIL w/o Residual LSTM VGG16 93.76  89.56 90.63 86.47 90.16  89.90 91.22 92.69 90.55
VGG16 93.76  89.56 90.70 87.67 90.20  89.49 94.38 9291 91.08
Graph LSTM in LSTM (GLIL) ResNet50 9496 89.56  90.7 87.67 9427 89.49 94.78 94.69 92.02
Inception-v3 | 95.85 9045 91.76 89.46 95.69 92.27 94.98 93.82 93.04

(b)

Fig. 6.
whole activity. The bounding box on (a) CAD. (b) VD.

in recognition accuracy. Specifically, the recognition results
obtained by B3 and B4 successfully validate the importance
of the residual connection for learning the hierarchical LSTMs.
In comparison to B3 and B4, the improvement obtained
by B5 demonstrates that simultaneous capturing person-level
motion and group-level motion are effective for recognizing
group activities. Specifically, in the Ipass, rpass, Iset, and rset
activity scenes within some outlier persons, BS performs much
better than B4 due to the “host—parasite” architecture of BS5.
Furthermore, we push GLIL into a hierarchical framework
within an R-LSTM and obtain better recognition accuracy. The
confusion matrix of the proposed GLIL on the VD is shown
in Fig. 7. We find that the confusion occurs due to visually
similar motions, e.g., “right set” and “right pass.”

Some recognition results obtained by the proposed GLIL on data sets. On CAD, no more than five persons are randomly selected to represent the

2) Comparison With the State of the Art: We compare the
performance of the proposed GLIL with several competitive
methods. The recognition accuracies obtained by different
methods are shown in Table II. Among these methods,
Shu et al. [16], Bagautdinov et al. [34], Biswas and Gall [44],
Tang et al. [57], and Ibrahim et al. [62] do not provide the
recognition accuracy of each class, and Li and Chuah [56]
ignores the classes of “left winpoint” and “right winpoint.”
As expected, GLIL achieves the best performance on average.
In particular, GLIL achieves approximately 8% improvement
compared with one original work [15] that releases the VD.
More importantly, the MPCA obtained by GLIL is compa-
rable to the state-of-the-art methods (e.g., Wu er al. [45],
Azar et al. [46], and Gammulle et al. [47]). These results
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Fig. 7. Confusion matrix of the proposed GLIL (VGG16 as the backbone)
on VD.

demonstrate that GLIL with a host—parasite architecture can
effectively simulate the relationship between the person-level
actions and group activity. Finally, we show some recognition
results obtained by GLIL in Fig. 6(b).

VI. DISCUSSION

In this article, we build a novel deep network architecture,
called GLIL, by simultaneously modeling the person-level
actions and group-level activity. In the architecture of GLIL,
several P-LSTMs locate inside the G-LSTM, where the mem-
ory cells of P-LSTMs link to a common graph-level memory
cell of graph-LSTM. It can be seen as that GLIL constructs
a new ‘“host—parasite” architecture. Such new architecture is
different from the traditional hierarchical architecture, e.g.,
Ibrahim et al. [15], Yan et al. [17], and Wang et al. [18].
For traditional graph architecture, there are two nodes that
are linked by edge, and several nodes construct a graph. For
GLIL, two P-LSTMs are not directly linked by an edge,
and all P-LSTMs are linked to a common graph-LSTM,
as shown in Fig. 3(b). Thus, GLIL is also different from
the Graph RNN/LSTM, Tang et al. [31], Deng et al. [33],
Deng et al. [43], and Biswas and Gall [44]. To the best of
our knowledge, GLIL is a new architecture for modeling the
person-level actions and group-level activity.

VII. CONCLUSION AND FUTURE WORK

In this article, to address the problem of group activity
recognition, we propose a novel GLIL framework by mod-
eling the person-level actions and the group-level activity
simultaneously. In the host—parasite architecture of GLIL,
several P-LSTMs in the local view model the person-level
actions (parasites) based on the interactions among persons,
while a G-LSTM in the global view models the group-level
activity (host). Furthermore, to utilize the temporal features
instead of the static features as the input of GLIL, we extend an
R-LSTM to learn the person-level residual features (including
static features and temporal features) of each person, in which
a residual connection can avoid the gradient vanishing or
exploding in the learning process to some extent. Experimental
results on two public data sets demonstrate that the proposed
GLIL has improved the recognition accuracy compared with

the state-of-the-art methods. In future work, we will embed the
proposed GLIL into the GAN framework to train an activity
recognizer in a few-shot learning way.
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