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Abstract—This work aims to address the group activity recognition problem by exploring humanmotion characteristics. Traditional

methods hold that themotions of all persons contribute equally to the group activity, which suppresses the contributions of some relevant

motions to the whole activity while overstating some irrelevant motions. To address this problem, we present a Spatio-Temporal Context

Coherence (STCC) constraint and a Global Context Coherence (GCC) constraint to capture the relevant motions and quantify their

contributions to the group activity, respectively. Based on this, we propose a novel Coherence ConstrainedGraph LSTM (CCG-LSTM)

with STCC andGCC to effectively recognize group activity, bymodeling the relevant motions of individuals while suppressing the

irrelevant motions. Specifically, to capture the relevant motions, we build the CCG-LSTMwith a temporal confidence gate and a spatial

confidence gate to control thememory state updating in terms of the temporally previous state and the spatially neighboring states,

respectively. In addition, an attentionmechanism is employed to quantify the contribution of a certain motion bymeasuring the

consistency between itself and the whole activity at each time step. Finally, we conduct experiments on two widely-used datasets

to illustrate the effectiveness of the proposed CCG-LSTM compared with the state-of-the-art methods.

Index Terms—Group activity recognition, long short-term memory, fine-grained motion, deep learning

Ç

1 INTRODUCTION

TRADITIONAL action recognition, such as single-person
action recognition [1] and two persons’ interaction recog-

nition [2], usually performed by one/two persons in a video,
has achieved satisfactory performance over the past deca-
des [3], [4]. Compared with traditional human action, group
activity [5] (also called collective activity [6]) is a more com-
plex yet common action in a scene. Different from single-
person action and two persons’ interaction, a group activity is
usually performed by multiple (� 3) persons simultaneously.
Therefore, in group activity recognition, we need to model
multiple persons’ individual actions and their interactions.
This is a fine-grained recognition task compared to traditional
single-person action recognition and two persons’ interaction
recognition [7], and thus to bemuchmore challenging.

Benefit from the success of Recurrent Neural Network
(RNN) [8], especially for Long Short Term Memory
(LSTM) [9], group activity recognition has made progress
in some extent in recent years [10], [11], [12], [13]. By
reviewing existing deep learning methods related to
group activity recognition, a common solution is to first
learn a person-level action representation of each person,
and then integrate all the individual representations to

recognize the group-level activity. Specifically, some early
methods assumed that all persons in an activity scene are
independent from each other [10], [11]. Subsequently,
some works consider that all persons in an activity scene
are dependent on each other, and model each person’s
individual motion by referring to the other persons’
motion states [2], [12], [14].

However, the aforementioned methods hold that the
motions of all persons contribute equally to the group activ-
ity, which suppresses the contributions of some relevant
motions to the whole activity and overstates some outlier
motions irrelevant to thewhole activity. To address this issue,
Deng et al. [13], [15] indicated that most persons contribute to
the group activity, while some persons are irrelevant to the
group activity. They explored all the motion information of
“relevant” persons to recognize the group activity in an itera-
tive manner while ignoring all the motion information from
“irrelevant” persons. Unfortunately, the “relevant” persons
are not always relevant to the group activity, while the
“irrelevant” persons are not always irrelevant to the group
activity. That is to say, the contribution of a certain motion to
thewhole activity is decided only by its relevance to the activ-
ity, regardless of the person it comes from.

Therefore, how to capture the relevant motions of individ-
uals becomes important for understanding group activity. By
observing the group activities, we find that: 1) in the temporal
domain, most of the motions of a certain person are usually
coherentmost of the time; 2) in the spatial domain, themotion
of a certain person is usually consistent with the context
motion information from the other persons most of the time.
Based on these observations, we present a Spatio-Temporal
Context Coherence (STCC) constraint: if an individual’s motion
is coherent in the temporal domain and consistent with other
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individuals’ motions in the spatial domain, this motion
belongs to the relevant motion. For example, in Fig. 1, most
of the relevant motions of individuals are relevant to the
“left set” activity. These relevant motions are not only cons-
istent with each other in the spatial domain, but also coherent
to their previousmotions in the temporal domain. Obviously,
the spatial interactions among persons are dependent
on the temporal motions of individuals. Recently, it has been
proven that Graph LSTM can model sequence data in spatio-
temporal domains [16] simultaneously.Motivated by this, we
consider extending Graph LSTMwith the STCC constraint to
understand the group activity by exploring the individual
motions in both spatial and temporal domains.

Empirically, although all relevant motions of individuals
contribute to inferring the class of group activity, their con-
tributions are different. To better illustrate this, we take the
“left set” activity in a volleyball game as an example, as
shown in Fig. 1. Both the “setting” motion of person B and
the “moving” motion of person D are relevant motions in
the “left set” activity. However, the former motion is more
crucial than the latter motion. Thus, to better understand
the group activity, we should learn to quantitatively mea-
sure the contribution of a certain motion to the whole activ-
ity at a certain time step. To this end, we present another
critical constraint, namely Global Context Coherence (GCC):
the more a certain motion is consistent with the whole activ-
ity, the larger contribution it makes, and vice versa. Inspired
by the attention models in previous works [17], [18], we
adopt an attention mechanism to quantify the contribution
of a certain motion by measuring the consistency between
itself and the whole activity under the GCC constraint.

To explore the relevant motions while suppressing
the irrelevant motions, we propose a novel Coherence Con-
strained Graph LSTM (CCG-LSTM) with STCC and GCC

constraints for group activity recognition. It is shown in
Fig. 2 by using a volleyball game as an example. First, we
extract the CNN feature of each person on the detected and
tracked bounding box by employing a pre-trained CNN
model [19]. Second, we take the CNN features of all persons
as the input of CCG-LSTM, to jointly learn the individual
motion states of all persons under the STCC constraint over
time. Specifically, to capture the relevant motions at each
time, a CCG-LSTM Unit with a spatial confidence gate and
a temporal confidence gate is built to control the memory
state updating in terms of the temporally previous motion
state and the spatially neighboring motion states. Third, we
employ an attention mechanism with GCC to quantify the
contribution of the relevant motions by learning different
attention factors corresponding to different motions. Here, a
specific attention factor of a certain motion measures the
contribution of this motion to the whole activity at a certain
time step. Subsequently, at each time step, an Aggregation
LSTM aggregates all the individual motion states weighted
by different attention factors into a hidden representation of
the whole activity. After that, each hidden representation of
the activity is input to the softmax classifier at each time
step, and then we average the outputs of all the softmax
classifiers to infer the class of the group activity.

Overall, the main contributions of this work can be sum-
marized as follows.

� We deeply explore the human motion characteristics
in the scenario of group activity with multiple per-
sons, and present two constraints, i.e., Spatio-
Temporal Context Coherence and Global Context
Coherence, to capture and quantify the relevant
motions of individuals.

� To effectively recognize group activities, we propose
a novel Coherence Constrained Graph LSTM (CCG-
LSTM) to learn the discriminative representation of a
whole activity by modeling the motions of individu-
als relevant to the whole activity, while suppressing
the irrelevant motions.

� We conduct experiments on two widely-used data-
sets (Volleyball Dataset [10] and Collective Activity
Dataset [20]) to illustrate the effectiveness of the pro-
posed CCG-LSTM method compared with the state-
of-the-art methods.

The rest of this paper is organized as follows. Section 2
reviews related works. Section 3 introduces the proposed
CCG-LSTM in details. Experiments are conducted in
Section 4, followed by the conclusion in Section 5.

2 RELATED WORKS

2.1 RNN-Based Action Recognition

Action recognition aims to recognize an activity performed
by one/two persons in the computer vision filed [2], [21],
[22], [23]. A large family of action recognition methods pro-
vided various spatio-temporal features to represent the
action in a video, such as Histogram of Oriented Gradients
(HOG) [24], Dense Trajectories [22], 3D-SIFT [25], Histogram
of Optical Flow (HOF) [26], and so on.

As a neural network for handling sequential data with
variable length [27], [28], Recurrent Neural Networks [8],

Fig. 1. Illustration of the relevant motions constrained by Spatio-
Temporal Context Coherence (STCC) and Global Context Coherence
(GCC) in a “Left set” activity of volleyball game. STCC aims to capture
the relevant motions of persons, and GCC aims to measure the contribu-
tion of the relevant motions.
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especially for Long Short-Term Memory [9], have made
progress in action recognition for the last five years [10], [11],
[21], [29], [30], [31]. In the early stage, some researchers
employed an RNN as a temporal-sequence classifier to learn
the representation of action by capturing the temporal infor-
mation with frames over time [21], [32]. The common solu-
tion is to combine the CNN layers and RNN/LSTM layers in
a bottom-up way. For example, Wu et al. [33] proposed to
train three types of CNNs equipped with an LSTM layer to
model the spatial, short-term motion and audio correspond-
ing to the inputs of video frames, stacked optical flows, and
audio spectrograms, respectively.

To leverage the spatial information between different
body parts, Du et al. [30] divided a human body skeleton
into five parts based on the human skeleton, and then fed
these five parts into five RNNs. As the number of layers
increases, the representation outputs from multiple RNNs
are hierarchically fused into the inputs of the higher layers.
Subsequently, for the spatial interaction information among
different persons, Shu et al. [2] proposed to model the long-
term inter-related motions among interacting individuals,
rather than the individual motions of each person.

Moreover, for various action scenarios [29], [34], some
researchers evolved the architectures of the traditional LSTM
to address the problem of action recognition well. For exam-
ple, to capture the temporal change of motion information
between two consecutive frames, Veeriah et al. [31] proposed
a Differential RNN architecture equipped with the Deri-
vative of States between LSTM gates. Moreover, Shahroudy

et al. [34] proposed a Part-aware LSTM that separates the
memory cell into multiple sub-cells corresponding to differ-
ent skeleton parts and explicitly models the dependencies
over spatial and temporal domains concurrently.

2.2 Group Activity Recognition

In contrast to traditional action recognition, group activity
recognition aims to automatically understand an activity
performed by at least three persons [20], [35], [36], [37]. Over
the past years, group activity recognition has developed into
an attractive topic in the computer vision area [6], [15], [38],
[39], [40], [41]. Since Deep Neural Networks (DNN) have
shown excellent performance in a variety of computer vision
tasks, many DNN-based activity recognition methods have
been proposed in recent years [10], [15], [42], [43]. As one of
most representative works, Ibrahim et al. [10] proposed a
hierarchical model with several LSTM layers to learn the
motion state of each person in a temporal sequence, and then
combine the motion states of all persons into the hidden pre-
sentation of the whole activity in each frame. Similarly,
Wang et al. [42] extended an RNN-based hierarchical frame-
work to learn three level motions, i.e., person-level motions,
group-level motions and scene-level motions corresponding
to the individuals, persons within a group, persons within at
least two groups.

In a group activity, most persons interact with each other,
which is the main characteristic compared with the single-
person action. Therefore, some works [7], [44] proposed to
model the interaction-related motions among persons over

Fig. 2. The proposed Coherence Constrained Graph LSTM (CCG-LSTM) for recognizing a group activity. The personal data transfer, previous state
transfer, context state transfer and motion state transfer denote the transferring of the input feature of individual, previous motion state of individual,
spatial context state of neighbor, and current motion sate of individual, respectively. Spatial-Temporal Context Coherence (STCC) consists of the
spatial context coherence and spatial context coherence. Aggregation LSTM aggregates the relevant motions of all persons with different attention
factors into the hidden representation of the whole activity at each time step. Best view in color version.
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time. For example, Shu et al. [44] proposed a Confidence-
Energy Recurrent Network to integrate the related-
confidences from two types of predictions (individual
action prediction and human interaction prediction) into
an energy layer in inferring the class of event, i.e., event
detection [45].

However, existing methods hold that all persons in a
group activity contribute equally to this activity, which brings
in some irrelevant motions of individuals to the whole activ-
ity. Recently, Deng et al. [13], [15] indicated that most of the
persons contribute to inferring the class of the group activity,
while a small number of persons are irrelevant to the activity
most of the time. Specifically, Deng et al. [13], [15] proposed
an inference learning model to iteratively find the “relevant”
persons, while removing the “irrelevant” persons based on
the relation between the person-level class label and group-
level class label. Unfortunately, the “relevant” persons
are not always relevant to the group activity, while the
“irrelevant” persons are not always irrelevant to the group
activity. Therefore, it is more reasonable to capture the rele-
vant motions themselves, no matter they come from the
“relevant” persons or “irrelevant” persons. To explore the rel-
evantmotionswhile suppress the irrelevantmotions, we pro-
pose a novel Coherence Constrained Graph LSTM (CCG-
LSTM)with STCC andGCC constraints.

3 COHERENCE CONSTRAINED GRAPH LSTM

3.1 Motivation

For traditional action recognition, given a video clip
fxt 2 RDjt ¼ 1; . . . ; Tg with T frames, where xt is the static
feature (such as a CNN feature [19]) of the tth frame, and D
is the dimension of xt, we can utilize Long Short-
Term Memory [9] to learn a sequence of motion states
fht 2 Rdjt ¼ 1; . . . ; Tg to describe a person’s action or multi-
ple persons’ activity in this video clip. For a group activ-
ity [10], multiple persons (� 3 persons) interact with each
other in the spatial domain, and their motions vary with
time in the temporal domain. We analyze the motions of all
persons from time step 1 to T , and recognize what they are
doing in this video clip, which is called group activity recog-
nition in this paper. If we directly employ the traditional
LSTM [9] to learn the representation of the whole activity
based on the frame-level features, some specific motion
information of individuals cannot be captured well, and the
learned representations of different activities are not dis-
criminative enough. Thus, similar to the recent LSTM-based
methods [10], [44], we model the group activity via the per-
son-level features rather than the frame-level features.

It has been proven that LSTM can well capture the tem-
poral motions of individuals [10], [21], while some exte-
nded approaches were proposed to model the spatial
interactions among individuals [2], [32]. However, they
neglect the fact that the spatial interactions among persons
are dependent on the temporal motions of individuals,
which is an important clue for group activity recognition.
As we know, the graph-based learning methods can build
the spatial relation of a certain number of nodes [46], [47].
Some researchers integrate the ideas of graph-based learn-
ing and LSTM to propose Graph LSTM methods for object
detection [48] and image segmentation [49], by regarding

the super-pixels of image as a sequential set in the spatial
domain. This kind of method models each sequential data
via an LSTM, where each LSTM unit is regarded as a graph
node, and each edge connects two nodes. Motivated by this,
we make an attempt to model the temporal motions of indi-
viduals and spatial interactions among persons concur-
rently via the Graph LSTM in this work.

3.2 Graph LSTM

Given a video clip with T frames describing a specific group
activity within V persons, let xt

v 2 RD denote the static fea-
ture (e.g., CNN features) of the vth person in the tth frame,
where t 2 f1; 2; . . . ; Tg and v 2 f1; 2; . . . ; V g, we can const-

ruct a spatial sequential set fxt
vgVv¼1 for each frame and a tem-

poral sequential set fxt
vgTt¼1 for each person. These two types

of sets in the spatial and temporal domains can be used to
construct a set of graphs Gt ¼ fSt;Etg (t ¼ 1; 2; . . . ; T ), where
St ¼ fxt

vgVv¼1 is the set of nodes at time step t, Et is the adja-
cency-edge matrix, xt

v is the vth node of Gt corresponding to
the vth person, and Et

i;j denotes an adjacency edge between
the ith node and the jth node in graph Gt. Similar to [50], we
extend the traditional LSTM to a Graph LSTM. In the Graph
LSTM, for the vth node, its input gate itv, forget gate f

t
v, output

gate ot
v and its neighboring forget gate ~f

t

v at time step t are
decided by its input feature xt

v at current time step, itsmotion
state ht�1

v and the spatial context state at�1
v from its spatial

neighbors at the previous time step, respectively. Formally,
at time step t, the motion state ht

v of the vth node in Graph
LSTM can be formulated as follows.

at�1
v ¼ Et

:;v

� �T
½� � � ;ht�1

i

T
; � � ��T þ ba; i 2 FðvÞ; (1)

itv ¼ sðWix
t
v þUih

t�1
v þGia

t�1
v þ biÞ; (2)

f tv ¼ sðWfx
t
v þUfh

t�1
v þGfa

t�1
v þ bfÞ; (3)

~f
t

v ¼ sðW~fx
t
v þU~fh

t�1
v þG~fa

t�1
v þ b~fÞ; (4)

ot
v ¼ sðWox

t
v þUoh

t�1
v þGoa

t�1
v þ boÞ; (5)

gt
v ¼ ’ðWgx

t
v þUgh

t�1
v þGga

t�1
v þ bgÞ; (6)

ct�1
s ¼

P
i2FðvÞ c

t�1
i

jFðvÞj ; (7)

ctv ¼ itv � gt
v þ f tv � ct�1

v þ ~f tv � ct�1
s ; (8)

ht
v ¼ ot

v � ’ðctvÞ; (9)

where W�, U�, and G� are weight matrices, b� is a bias vec-
tor, sð�Þ is the sigmoid function, ’ð�Þ is the hyperbolic tan-
gent tanhð�Þ, � denotes element-wise product, FðvÞ denotes
the set of the neighbors of the vth node in graph Gt, and ct�1

s

denotes the spatial context memory state of the vth node,
which is the average of the neighboring memory states.

As we discussed before, most of the motions are relevant
to the whole activity, while a small number of motions are
irrelevant in a group activity. For the relevant motions, their
contributions to the group activity are different. Thus, the
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main goal of this work is to find the crucial relevant motions
and measure their contributions for inferring the class of
group activity. Different from traditional group activity rec-
ognition methods treating the motions equally, the motions
in this work are regarded as fine-grained motions since they
have different contributions to the group activity. In this
work, we present a Spatio-Temporal Context Coherence
constraint and a Global Context Coherence constraint to
capture and quantify the relevant motions of individuals,
respectively. By extending the basic Graph LSTM, we pro-
pose a Coherence Constrained Graph LSTM (CCG-LSTM)
with STCC and GCC constraints.

The details of a certain node of CCG-LSTM at time step t
are shown in Fig. 3. The components marked with blue
color, orange color and red color denote the Temporal Con-
text Coherence (TCC), Spatial Context Coherence (SCC),
and Global Context Coherence constraints, respectively.
The details of the TCC, SCC, and GCC are introduced in the
following sections.

3.3 Spatio-Temporal Context Coherence

As aforementioned, at a certain time step, if one person’s
motion is coherent to her/his motions in the temporal
domain, as well as consistent with other persons’ motions in
the spatial domain, this kind of motions is relevant motion.
We call it Spatio-Temporal Context Coherence constraint in
this paper. STCC consists of Temporal Context Coherence
and Spatial Context Coherence corresponding to the tempo-
ral and spatial domains, respectively. Here, we first intro-
duce SCC in detail.

Generally, a group activity contains multiple persons
who perform their respective actions over time. The pri-
mary consideration of the group activity recognition prob-
lem is how to learn the individual motion state of each
person. The common strategy in recent methods [2], [10],
[42], [44] employs the sequence models (e.g., RNN and
LSTM) to model the individual motions from T consecutive
frames, which is in accordance with the kinematic principle.
To better understand the individual motion, we bring in a
new characteristic of individual motion based on Temporal
Context Coherence: most of the relevant motions of a certain
person are coherent over time.

Intuitively, TCC reflects that the relevant motions of a
certain person between two consecutive frames are similar
to each other. Thus, we can employ the TCC constraint to
exclude the sudden motions to some extent. For example, in

the “left set” activity of a volleyball game, a person who is
moving over most of the time steps suddenly falls down.
This “fall down” motion is not coherent to the previous
motions. It should be suppressed when updating the mem-
ory state in CCG-LSTM.

Formally, to bring in the TCC constraint into CCG-LSTM,
we design a temporal confidence gate (denoted by ttv) to
control the motion information transferring across the CCG-
LSTM units (CCG-LSTM unit is an unfolded part of CCG-
LSTM at one time step) in the temporal domain. To measure
the motion coherence of a certain person at a certain time
step, we adopt the similarity between the previous motion
state and the current input feature.

Since the dimensions of the input feature and the motion
state are different, we need to project them into a common
space. For the vth person at time step t, the projection vector
of input feature xt

v can be computed by

~xt
v ¼ ’ðWxðxt

vÞÞ; (10)

where Wx : RD ! RM is a projection matrix. Similarly, the
projection vector of the motion state ht�1

v of the vth person
at the previous time step can be computed as,

qt
v ¼ ’ðWqðht�1

v ÞÞ; (11)

whereWq : R
d ! RM is a projection matrix.

The temporal confidence gate ttv at time step t is activated
by the difference between ~xt

v and qt
v, as follows,

tttv ¼
1

expðrð~xt
v � qt

vÞ2Þ
; (12)

where the parameter r controls the bandwidth of the
function.

Finally, under the TCC constraint, the updating equation
(Eq. (8)) of memory state ctv at time step t becomes

ctv ¼ tttv � itv � gt
v þ f tv � ct�1

v þ ~f tv � ct�1
v : (13)

In the above updating equation of the memory state ctv, if
the current motion state is incoherent to the previous
motion state, it is an irrelevant motion, which is suppressed
by the temporal confidence gate tttv when updating the
memory state ctv.

Beyond the temporal motions of individuals, the interac-
tions among persons should also be considered in a group
activity. In other words, the relevant motions of different
persons are not only coherent to their motions at the previ-
ous time steps in the temporal domain, but also consistent
with each other in the spatial domain. Therefore, besides
TCC, we present a Spatial Context Coherence constraint to fur-
ther capture the relevant motions of individuals in the spa-
tial domain, by assuming that the relevant motions of all
persons are consistent with each other in the spatial domain.

Intuitively, SCC reflects that the relevant motions of a
certain person are consistent with the surrounding persons
in the spatial domain. For example, in Fig. 4b, the relevant
motions of the left three persons are walking together,
which are consistent with each other. However, the motions
of the rightmost person are irrelevant motions, which are
not consistent with the motions of the other persons in the

Fig. 3. A node of the CCG-LSTM at time step t. The components marked
with blue color, orange color and red color denote the Temporal Context
Coherence (TCC), Spatial Context Coherence (SCC), and Global Con-
text Coherence (GCC) constraints, respectively.
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same scene. Thus, SCC is crucial for capturing the relevant
motions of individuals in the spatial domain.

Formally, we design a spatial context confidence gate
(denoted by &&tv) to bring the SCC constraint into CCG-
LSTM. This gate controls the motion information transfer-
ring across CCG-LSTM in the spatial domain. In this work,
the spatial confidence gate is activated by the consistency
between the input feature of a certain person and the spatial
context state from her/his neighbors. Specifically, for the
vth person, her/his spatial context state is defined as

at�1
v ¼

X
i2FðvÞ

et�1
v;i h

t�1
i ; (14)

where et�1
v;i denotes the relationship weight between the vth

person and the ith person at time step t. Here, it is learned
via et�1

v;i ¼ softmaxðfðht�1
v ; ht�1

i ÞÞ, where ht�1
v denotes the vth

person’s motion state at time step ðt� 1Þ and fð�Þ is the
multi-layer perceptron in [51]. Similar to Eq. (10), the projec-
tion vector of the spatial context state is computed as

pt
v ¼ ’ðWpðat�1

v ÞÞ; (15)

whereWp : R
d ! RM .

Based on the similarity between the input feature and the
spatial context state of the vth person, the spatial context
confidence gate &&tv can be activated via

&&tv ¼
1

expðrð~xt
v � pt

vÞ2Þ
: (16)

Then, under the GCC constraint, the memory state ctv at
time step t is updated as

ctv ¼ &&tv � itv � gt
v þ f tv � ct�1

v þ ~f tv � ct�1
v : (17)

In the above updating equation of the memory state ctv, if
the input feature of a certain person is inconsistent with
her/his spatial context state, it is an irrelevant motion, and
is suppressed during memory state updating.

When Spatio-Temporal Context Coherence is equipped to
CCG-LSTM, the motions of individuals are jointly con-
strained by the TCC, and SCC. In STCC, if the motion of a
certain person is coherent in the temporal domain and con-
sistent with the other individuals’ motions in the spatial
domain, this motion is relevant to the whole activity. There-
fore, in CCG-LSTM with STCC, the memory state updating
of ctv at time step t is jointly constrained by the temporal con-
fident gate tttv and the spatial confident gate &&tv, as follows

ctv ¼ tttv � &&tv � itv � gt
v þ f tv � ct�1

v þ ~f tv � ct�1
v : (18)

The above equation can be explained as follows.
For a certain person, if her/his current input feature xt

v is
different from her/his previous motion state and spatial
context state, the value of tttv � &&tv is small, and the current
motion state of this person is strongly suppressed during
memory state updating.

3.4 Global Context Coherence

When we capture the relevant motion states of individuals
(i.e., individual representations) under the STCC constraint, a
straightforward strategy is to fuse these motion states into the
hidden representation of activity via the pooling operation,
e.g., max pooling, and average pooling. For example, Shu
et al. [10] adopted the average pooling strategy to combine a
group of individual motion states into the hidden representa-
tion of activity. We find that this strategy holds that the
motions of all persons contribute equally to the group activity.

In fact, although all relevant motions of individuals con-
tribute to inferring the class of group activity, their contribu-
tions are different. Although STCC can capture the relevant
motions of individuals, it cannot quantify the contributions
of the relevant motions to the group activity. Therefore, we
present a Global Context Coherence constraint to quantify the
contributions of the relevant motions in a learning way. As
aforementioned in the Introduction section, the GCC is
defined as: the more a certain motion is consistent with the
whole activity, the larger contribution it makes.

Therefore, the consistency between the motion of a cer-
tain person and the whole activity is the key point in GCC.
Inspired by the attention models in previous works [17],
[18], we adopt an attention mechanism to measure the con-
sistency between itself and the whole activity. However, the
hidden representation of the whole activity is the target we
aim to learn, and thus it is unknown. Therefore, we use the
average motion state ht

f of all individuals’ motion states to
approximate the hidden representation of the whole activity
in this part, namely ht

f ¼ 1
V

PV
i¼1 h

t
i. Then we employ an

attention model to learn an attention factor bt
v that measures

the contribution of the motion state ht
v of the vth person to

the whole activity,

bt
v ¼ softmaxðfðht

v;h
t
fÞ; gÞ; v ¼ 1; 2; . . . ; V; (19)

where g is a temperature parameter [17]. We show some
examples of relevant motion quantified by GCC in Fig. 4.

Fig. 4. Some examples of relevant motion quantified by Global Context
Coherence (GCC). The higher bar chart indicates the corresponding
motion is more relevant to the group activity.
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The attention model in [17] directly use all known features
as the input of the multi-layer perceptron to compute the
attention factor of this person. It can be seen that the atten-
tion model of GCC does not require the known representa-
tion feature of the activity scene, in contrast to the attention
model in [17].

Then, we can compute the motion state ĥ
t

v of the vth per-
son under the GCC constraint by

ĥ
t

v ¼ bt
vh

t
v: (20)

To date, the obtained ĥ
t

v is the final motion state of the vth
person at the time step t in the Graph LSTM, under the con-
straints of STCC and GCC.

Similar to [36], we employ an Aggregation LSTM in the
spatial domain to aggregate the motion states of all persons
into a hidden representation of the whole activity at time
step t person-by-person, as shown in Fig. 5. We take all per-

sons’ motion states fĥt

vgVv¼1 at time step t as the input of the
Aggregation LSTM, i.e.,

zt ¼ Aggregation LSTMðĥt
v; s

t
v�1Þ; (21)

where stv�1 is the hidden state in Aggregation LSTM, and zt is
the hidden representation of the whole activity at time step t.

Finally, we feed every zt (t ¼ 1; 2; . . . ; T ) into a softmax
classifier, i.e.,

yt ¼ softmaxðztÞ; t ¼ 1; 2; . . . ; T; (22)

and then we average the outputs of all the softmax classi-
fiers to obtain the probability class vector of group activity.

4 EXPERIMENTS

We conduct experiments on two widely-used benchmarks
to validate the effectiveness of the proposed CCG-LSTM
compared with the state-of-the-art methods.

4.1 Baselines

For the ablation studies of the proposed CCG-LSTM, we
present seven baseline methods, as follows.

B1 Frame-Level CNN. This baseline is the basic CNN
model fine-tuned for group activity recognition in
frames without considering the individuals. The
static CNN feature of each frame is input into the
softmax classifier, and we average the outputs of all
softmax classifiers to infer the class of the group
activity.

B2 Person-Level CNN. This baseline uses the pre-trained
CNN model to extract the fc7 feature of each person
on the person bounding box. Then, the features of all
persons are max-pooled into a single feature at each
time step. Finally, each of this single feature is input
into the softmax classifier, and we average the out-
puts of all softmax classifiers to infer the class of the
group activity.

B3 Graph LSTM. If the proposed CCG-LSTM is without
any coherent constraint, it becomes a basic Graph
LSTM model. Specifically, we feed the CNN features
of each person into the Graph LSTM, and then pool
features of all persons as the latent representation of
each frame to train a softmax classifier. This baseline
is designed to illustrate the capability of Graph
LSTM for modeling the temporal motions and spa-
tial interactions.

B4 CCG-LSTM with only TCC. This baseline is a simple
version of the proposed CCG-LSTM while consid-
ering only the TCC, and its implementation is similar
to CCG-LSTM. This baseline aims to illustrate the
importance of the TCC for capturing relevantmotions
in the temporal domain.

B5 CCG-LSTM with only SCC. This baseline is a simple
version of the proposed CCG-LSTM with only con-
sidering the SCC, and its implementation is similar
to CCG-LSTM. This baseline can illustrate the impor-
tance of the SCC for capturing relevant motions in
the spatial domain.

B6 CCG-LSTM with only STCC. To illustrate the effec-
tiveness of STCC, we design this important baseline
by omitting GCC in CCG-LSTM. This baseline cap-
tures the relevant motions of all persons equally.

B7 CCG-LSTM with only GCC. To illustrate the effective-
ness of GCC, we designed this baseline to directly
measure all motions (relevant or not) without con-
sidering the STCC and obtain the latent representa-
tion of each frame with GCC.

4.2 Implementation Details

For each video clip, we track a set of bounding boxes (track-
lets) around each person over T ¼ 10 time steps by the object
tracker [53] in the Dlib library [54]. To address the problem
of personmissing in some frames, we adopt the simple strat-
egy used in [10], [36] to make up the feature of the missing
person by a full-zeromatrix.

Similar to [2], [10], [44], we train the proposed CCG-LSTM
in a stage-wise manner. Specifically, we train a CNN model
to recognize individuals’ actions, and extract the CNN fea-
tures of individuals on the person’s bounding boxes, which
are input into CCG-LSTM for group activity recognition. The
proposed CCG-LSTM is compatible with various networks,
e.g., AlexNet [19], VGG [55], ResNet [56] and GoogLeNet
[57]. For fair comparison, we employ the pre-trained

Fig. 5. Examples of Aggregation LSTM on VD and CAD. (a) and (b)
denote the implementation of Aggregation LSTM in the volleyball match
with two sub-groups, and the collective activity with a group,
respectively.
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AlexNet model to extract the CNN feature of each person on
the person’s bounding box.

The CCG-LSTM is implemented with Pytorch toolbox on
a NVIDIA Tesla K40 GPU. We use the Adam algorithm [58]
with a learning rate of 0.0001 and a momentum of 0.99 for
all networks to minimize the loss function, and the learning
rate is decreased to 1=10 of the original value after every
five epochs.

4.3 Experiments on Volleyball Dataset

The Volleyball Dataset [10] consists of 55 videos with 4830
annotated frames, which are collected from YouTube. For
every frame, the bounding box of each person is given, each
person is labeled with one of the action classes (e.g.
“Waiting”, “Setting”, “Digging”, “Failing”, “Spiking”,
“Blocking”, “Jumping”, “Moving” and “Standing”), and
each video clip is labeledwith one of the fine-grained activity
classes (e.g. “Left pass”, “Right pass”, “Left set”, “Right set”,
“Left spike”, “Right spike”, “Left win” and “Right win”). We
split the training and testing sets following the same setting
in [10], namely two-thirds of the annotated frames are used
for training and the rest ones are used for testing. The dimen-
sions of the input data of CCG-LSTM, the motion state of
CCG-LSTM, and the hidden state of Aggregation LSTM are
set to 4096, 3000 and 4096, respectively. In the Volleyball
Dataset, there are two sub-groups corresponding to two
teams of players. First, all the motion states of the individuals
in each sub-group are aggregated into a representation via
Aggregation LSTM. Second, following [10], we recognize the
team activity based on the concatenation of the representa-
tions of two sub-group activities to avoid the confusion of
“left” and “right”.

Ablation Studies. The recognition accuracy of the proposed
CCG-LSTM compared with the baselines are shown in
Table 1. The proposed CCG-LSTM achieves the best perfor-
mance on average and some activity classes (e.g., “Right
pass”, “Left Spike”, and “Right win”). Compared with B1
and B2, the variants (i.e., B3-B7) of CCG-LSTM have signifi-
cant improvements in recognition accuracy by jointly explor-
ing the temporal motions of individuals and spatial
interactions among persons. B4 and B5 are designed to illus-
trate the importance of TCC and SCC for capturing relevant
motions in the temporal and spatial domains, respectively.

In comparison to B3, the improvements obtained by B6 and
B7 demonstrate that capturing the relevant motions by STCC
and quantifying their different contributions by GCC are
both effective for recognizing group activities. Since GCC
measures the consistency between the individual action and
the activity, it can better capture the difference between two
same-type activities (such as “left win” vs. “right win”) than
STCC. Thus, B7 (with only GCC) gains better performance
on some specific activities, such as “Left win”. Either B6
(STCC) or B7(with GCC) gains performance on some specific
activities. However, compared with B6(STCC) and B7(with
GCC), CCG-LSTM (with both STCC and GCC) obtains better
and satisfactory performance on the activities of the right
pass, left/right set, left spike and right win. Finally, CCG-
LSTMgains the best average accuracy.

Comparison with the State-of-the-Art Methods. We compare
the proposed CCG-LSTM with the state-of-the-art methods,
including Ibrahim et al. [10], Shu et al. [44], Li et al. [52],
Sovan et al. [12], and Yan et al. [36] on the Volleyball Dataset.
Among these methods, Shu et al. [44] and Sovan et al. [12] do
not provide the specific accuracy per class, and Li et al. [52]
ignore the classes of “Left win” and “Right win”. The recog-
nition accuracies obtained by different methods are shown
in Table 1. We can see that, the proposed CCG-LSTM achi-
eves the best performance on average and inmost of the clas-
ses. In particular, CCG-LSTM achieves approximately 6.4
percent improvement compared with the original work [10]
that released this dataset. More importantly, the average per-
formance of the proposed CCG-LSTM is better than Biswas
et al. [12] that alsomodels the individuals’ motions and inter-
actions jointly. These results demonstrate that the proposed
CCG-LSTM is effective in modeling complex group activity
among two sub-groups.

Confusion Analysis. We analyze the confusion of the rec-
ognition result obtained by the proposed CCG-LSTM. The
confusion matrix of the proposed CCG-LSTM on the Volley-
ball Dataset is shown in Fig. 6. Since the actions of individu-
als are visually similar in most of the frames, group activity
recognition in this dataset can be seen as a fine-grained rec-
ognition task. It is noted that the largest confusion happens
between the “Right set” activity and “Right pass” activity,
where there are many similar frames and fine-grained per-
sons’ interactions between these two types of activities. For

TABLE 1
Recognition Accuracies Obtained by Different Methods on Volleyball Dataset

Methods Left pass Right pass Left set Right set Left spike Right spike Left win Right win Average

Ibrahim et al. [10] 77.9 81.4 84.5 68.8 89.4 85.6 88.2 87.4 82.9
Shu et al. [44] - - - - - - - - 83.6
Li et al. [52] 55.8 69.1 67.3 52.1 82.1 79.2 - - 67.6
Biswas et al. [12] - - - - - - - - 83.0
Yan et al. [36] 85.8 88.1 90.5 80.2 92.2 87.9 89.2 90.8 88.1

B1 (frame-level CNN) 59.3 62.9 64.9 66.7 83.8 76.3 89.2 72.4 71.9
B2 (single-person CNN) 73.0 73.8 83.3 70.8 86.0 87.9 74.5 47.1 74.6
B3 (Graph LSTM) 90.3 84.8 87.5 79.2 91.1 88.4 86.3 85.1 86.6
B4 (with only TCC) 89.8 84.8 86.9 77.6 91.1 89.6 88.2 86.2 86.8
B5 (with only SCC) 89.8 83.8 87.5 78.7 91.6 89.0 87.3 87.4 86.9
B6 (with only STCC) 89.8 87.6 85.1 78.1 92.2 90.8 90.2 88.5 87.8
B7 (with only GCC) 88.5 87.1 85.7 77.1 88.8 92.5 94.1 86.2 87.5

CCG-LSTM 88.1 90.0 89.9 78.1 93.9 91.3 90.2 93.1 89.3
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example, the “Left pass” activity and the “Left set” activity
are visually similar in most of the frames, and the difference
of persons’ interactions between the two types of activities
is subtle in most of the frames.

4.4 Experiments on Collective Activity Dataset

The Collective Activity Dataset (CAD) [20] contains 44 video
clips collected by a low-resolution hand-held camera. Each
person is manually labeled with a fine-grained activity label,
such as “Crossing”, “Waiting”, “Queuing”, “Walking” or
“Talking”, and a pose label (not used in this work). Subse-
quently, each activity scene is assigned to a class label of
group activity based on what the majority of people are
doing in the scene. We follow the train/test split provided
by [59], and use the person tracklets provided in [38]. Follow-
ing the experimental settings in [42], we merge the classes
“Walking” and “Crossing” into the class of “Moving” for fair
comparison. The dimensions of the input of CCG-LSTM, the
motion state of CCG-LSTM and the motion state of Aggrega-
tion LSTM are set to 4096, 2048 and 2048, respectively. Since
the number of individuals varies from 1 to 12, we randomly
select five effective persons for each frame and regard them
as an entire group. If the number of persons in one frame is
less than five, we take a full-zeromatrix as the person’s track-
lets of a new person.

Ablation Studies. The recognition accuracies obtained by
the proposed CCG-LSTM and the baselinemethods are illus-
trated in Table 2. The proposed CCG-LSTM obtains the best
performance on average compared with all baselines. It is
noted that B3, which considers the spatial interactions, has
not improved the performance compared to B2, since there
are few spatial interactions among persons in the “Waiting”
activity. Likewise, B4 with TCC performs better than B5 with
SCC, since the number of interacting persons is small. By
considering STCC (consisting of TCC and SCC), the perfor-
mance of B6 is improved comparedwith B1 – B5. If we jointly
consider the STCC and GCC constraints, the average accu-
racy has been improved to 93.0 percent, corresponding to the
best performance.

Comparison with the State-of-the-Art Methods. We compare
the proposed CCG-LSTMwith Lan et al. [60], Choi et al. [38],
Zhou et al. [62], Ibrahim et al. [10], Hajimirsadeghi et al. [59],
Wang et al. [42], Li et al. [52] and Yan et al. [36], and the rec-
ognition results obtained by different methods are shown in
Table 2. The results of some methods [10], [36], [38], [42],
[52], [59], [60], [62] are reported from the corresponding con-
fusion matrices. As expected, the proposed CCG-LSTM
obtains approximately 9 and 2 percent improvements com-
pared with two previous non-deep learning methods (i.e.,
[60] and [61]), respectively. Not only that, CCG-LSTM is also
better than the deep learning based methods, such as [10],
[42], [52], [59], [62]. More importantly, the performance of
the proposed CCG-LSTM is better than the state-of-the-art
method [36], while it only performs worse on the “Waiting”
activity due to the aforementioned issue.

Confusion Analysis. We show the confusion matrix of the
proposed CCG-LSTM on Collective Activity Dataset in
Fig. 7. As mentioned before, the class of group activity is
decided on what the majority of people are doing in this
scene. For many activity classes, the interactions of indiv-
iduals are visually similar in most of the frames. Thus, the
group activity recognition on CAD is a fine-grained reco-
gnition task to some extent. It is noted that the “Waiting”
activity is confused by the “Moving” activity seriously,
since the difference of persons’ interactions in these two
types of activities are almost the same. In general, the pro-
posed CCG-LSTM obtains satisfactory recognition accu-
racies for the fine-grained “Moving”, “Queuing”, and
“Talking” activities.

Fig. 6. Confusion matrix of CCG-LSTM on the Volleyball Dataset.

TABLE 2
Recognition Accuracies Obtained by Different Methods on CAD

Methods Moving Waiting Queuing Talking Average

Lan et al. [60] 92 69 76 99 84
Choi et al. [61] 90 82.9 95.4 94.9 90.8
Zhou et al. [62] 88.5 74.0 95.0 98.0 88.9
Ibrahim et al. [10] 95.9 66.4 96.8 99.5 89.7
Hajimirsadeghi et al. [59] 87 75 92 99 88.3
Wang et al. [42] 94.9 63.6 100 99.5 89.4
Li et al. [52] 90.8 81.4 99.2 84.6 89.0
Yan et al. [36] 92.8 76.6 100 99.5 92.2

B1 (frame-level CNN) 79.9 36.2 96.7 99.5 78.1
B2 (person-level CNN) 97.6 51.8 100 99.5 87.2
B3 (Graph LSTM) 96.2 38.3 100 99.5 83.5
B4 (with only TCC) 95.7 64.5 100 97.8 89.5
B5 (with only SCC) 95.2 55.3 100 99.5 87.5
B6 (with only STCC) 90.4 70.9 100 99.5 90.2

B7 (with only GCC) 94.3 63.1 100 99.5 89.2

CCG-LSTM 97.1 75.2 100 99.5 93.0

Fig. 7. Confusion matrix of the proposed CCG-LSTM on CAD.
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4.5 Visualization Analysis

To illustrate the contributions of SCC, TCC, STCC, and
GCC, we show some visualized examples by utilizing B4
(with TCC), B5 (with SCC), B6 (with STCC) and B7 (with
GCC) in modeling group activities, as shown in Fig. 8. How-
ever, visualizing the values of SCC, TCC, STCC, and GCC is
not a trivial task in the modeling learning process. To this
end, we adopt the following strategy to quantify them. First,
we compute the TCC Value and SCC Value of the vth
person at time step t by TCC Value ¼ meanðttvÞ, and
SCC Value ¼ meanð&&tvÞ, where meanð�Þ denotes the average
operation. Here, SCC Value is further implemented by the
Min-max Normalization. Based on the definition of STCC,
the STCC Value of the vth person at time step t is calculated
by STCC Value ¼ SCC Value	 TCC Value. For simplicity,

the GCC Value of the vth person at time step t is defined as
GCC Value ¼ bt

v, where all GCC Values in one frame are
implemented by the 01Normalization, respectively. Second,
we mark the SCC Value, TCC Value, and GCC Value of each
person at one time step. By this visualization method,
one individual’s motion with the larger STCC Value
(STCC Value ¼ SCC Value	 TCC Value), as well as the
larger GCC Value in one time step, is more relevant to
the group activity. For example, in Fig. 8a, one person in the
blue bounding box is setting the volleyball, which is the
most relevant to the “Right set” activity at this time step.
We also find that this motion has the largest GCC Value
(0.3), and the largest STCC Value (1	 0:98 ¼ 0:98). In
Fig. 8d, we can see that a person in the green bounding box
does not participate in the “ Talking” activity. We also find

Fig. 8. Visualized examples of SCC, TCC, STCC, and GCC in modeling group activities. In each time step, one motion with the larger STCC Value
(STCC Value ¼ SCC Value	 TCC Value), as well as the larger GCC Value, it is more relevant to the activity.
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that this person has the smaller GCC Value (0.1), and the
smallest SCC Value (0.3). It can be concluded that STCC (a
combination of SCC and TCC) and GCC can positively cap-
ture the relevant motions in the model learning process.

5 CONCLUSIONS

In this work, we explore the motion-level characteristics of
group activity with several coherence constraints and pro-
pose a novel Coherence Constrained Graph LSTM (CCG-
LSTM) for group activity recognition. Specifically, the
extracted CNN features of persons are fed into the CCG-
LSTM with STCC and GCC to capture the relevant motions,
as well as quantify their different contributions. Subse-
quently, an Aggregation LSTM aggregates the motion states
of all individuals into a hidden representation of the whole
activity at a certain time step. Finally, all the hidden repre-
sentations are input into the corresponding softmax classi-
fiers, of which the outputs are combined to infer the class of
the group activity. We conduct experiments on two widely-
used datasets to demonstrate the effectiveness of the pro-
posed method compared with the-state-of-art methods.
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